Skip to main content

Desalination of Seawater by Reverse Osmosis

  • Chapter
  • First Online:
Membrane and Desalination Technologies

Abstract

Desalination allows the use of non-conventional water sources such as seawater for the production of potable water. Reverse osmosis (RO), one of the technologies for desalination, is becoming popular in the water industry. In this chapter, theory of RO process, plant configurations, and practical considerations related to the plant operation are addressed. Factors such as high permeate flux, high solute rejection, and mechanical and chemical stability govern the production of membranes for RO. Cellulose acetate membrane is popular due to the chlorine and fouling resistance. When it comes to rejection, thin film membranes are advantageous. Membranes are usually arranged in modules. Concentration polarization and compaction are two major limiting factors in the RO technology. Feed water must be pretreated using conventional and/or membrane filtration technologies in order to minimize membrane fouling. Reduction in permeate, pressure drop over the system, and decrease in rejection are the indications for the requirement of cleaning and regeneration of membranes. Chemical and/or physical methods can be used for the cleaning and regeneration of membranes. A case study and the recent developments are discussed in order to enhance the understanding of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sourirajan S (1970) Reverse osmosis. Academic Press, New York

    Google Scholar 

  2. Loeb S, Sourirajan S (1960) Sea water demineralization by means of a semipermeable membrane. UCLA engineering report 60–60, University of California, Los Angeles

    Google Scholar 

  3. Podall HE (1972) Reverse osmosis. In: Li NN (ed) Recent developments in separation science, vol II. CRC Press, Cleveland, pp 171–203

    Google Scholar 

  4. Sun-tak H, Kammermeyer K (1976) Membrane in separations. In: Weissberger A (ed) Techniques of chemistry, Wiley, New York, 15(4):247–248

    Google Scholar 

  5. Matsuura T, Blais P, Pageau L, Sourirajan S (1977) Parameters for prediction of reverse osmosis performance of aromatic polyamide-hydrazide (1:1) copolymer membranes. Ind Eng Chem Process Des Dev 16:361–372

    Article  Google Scholar 

  6. Sourirajan S (1980) Reverse osmosis–a new field of applied chemistry and chemical engineering. In: Plenary lecture at ACS symposium on synthetic membranes and their applications, San Francisco, CA

    Google Scholar 

  7. Howe ED (1974) Fundamentals of water desalination. Marcel Dekker, New York

    Google Scholar 

  8. Rozelle LT, Cadotte JE, Cobian KE, Kopp CV (1977) Nonpolysaccharide membranes for reverse osmosis: NS-100 membranes. In: Sourirajan S (ed) Reverse osmosis and synthetic membranes, theory-technology-engineering. National Research Council, Canada, pp 249–312

    Google Scholar 

  9. Mukherjee D, Kulkami A, Gill WN (1994) Flux enhancement of reverse osmosis membranes by chemical surface modification. J Memb Sci 97:231–249

    Article  CAS  Google Scholar 

  10. Noble RD, Stern SA (1995) Membrane separations technology: principles and applications. Elsevier, New York

    Google Scholar 

  11. Jonsson G (1980) Overview of theories for water and solute transport in UF/RO membranes. Desalination 35:21–28

    Article  CAS  Google Scholar 

  12. Soltanieh M, Gill W (1981) Review of reverse osmosis membranes and transport models. Chem Eng Commun 12:279–287

    Article  CAS  Google Scholar 

  13. Mazid M (1984) Mechanisms of transport through reverse osmosis membranes. Sep Sci Technol 19:357–364

    Article  CAS  Google Scholar 

  14. Pusch W (1986) Measurement techniques of transport through membranes. Desalination 59:105–115

    Article  CAS  Google Scholar 

  15. Dickson J (1998) Fundamental aspects of reverse osmosis. In: Parekh B (ed) Reverse osmosis technology. Marcel Dekker, New York, pp 1–51

    Google Scholar 

  16. Rautenbach R, Albrecht R (1989) Membrane processes. Wiley, New York

    Google Scholar 

  17. Bhattacharyya D, Williams M (1992) Theory – reverse osmosis. In: Ho W, Sirkar K (eds) Membrane handbook. Van Nostrand Reinhold, New York, pp 269–280

    Chapter  Google Scholar 

  18. Lee S, Lueptow RM (2001) Reverse osmosis filtration for space mission wastewater: membrane properties and operating conditions. J Memb Sci 182:77–90

    Article  CAS  PubMed  Google Scholar 

  19. Burghoff H, Lee K, Pusch W (1980) Characterization of transport across cellulose acetate membranes in the presence of strong solute-membrane interactions. J Appl Polym Sci 25:323–329

    Article  CAS  Google Scholar 

  20. Sourirajanand S, Matsuura T (1995) Reverse osmosis/ultrafiltration principles. National Research Council of Canada, Ottawa

    Google Scholar 

  21. Matsuura T, Sourirajan S (1981) Reverse osmosis transport through capillary pores under the influence of surface forces. Ind Eng Chem Process Des Dev 20:273–279

    Article  CAS  Google Scholar 

  22. Mehdizadeh H, Dickson J, Eriksson P (1989) Temperature effects on the performance of thin-film composite, aromatic polyamide membranes. Ind Eng Chem Res 28:814–819

    Article  CAS  Google Scholar 

  23. Bhattacharyya D, Jevtitch M, Schrodt J, Fairweather G (1986) Prediction of membrane separation characteristics by pore distribution measurements and surface force-pore flow model. Chem Eng Commun 42:111–123

    Article  CAS  Google Scholar 

  24. Jevtitch M (1986) Reverse osmosis membrane separation characteristics of various organics: prediction of separation by surface force-pore flow model and solute surface concentration by finite element method. Dissertation, D. Bhattacharyya, Director, Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky

    Google Scholar 

  25. Matthiasson E, Sivik B (1980) Concentration polarization and fouling. Desalination 35:59–65

    Article  CAS  Google Scholar 

  26. Gekas V, Hallstrom B (1987) Mass transfer in the membrane concentration polarization layer under turbulent cross flow. J Memb Sci 30:153–161

    Article  CAS  Google Scholar 

  27. Gill WN, Matsumoto MR, Gill AL, Lee YT (1988) Flow patterns in radial flow hollow fiber reverse osmosis systems. Desalination 68:11–28

    Article  CAS  Google Scholar 

  28. Kimura S, Sourirajan S (1968) Mass transfer coefficients for use in reverse osmosis process design. Ind Eng Chem Process Des Dev 7:539–547

    Article  CAS  Google Scholar 

  29. Sirkar KK, Rao GH (1983) Additivity between donnan salt and ion-exchanged salt in the specific conductance of membranes. Desalination 48:25–31

    Article  CAS  Google Scholar 

  30. Jonsson G (1978) The influence of pressure in the compaction of asymmetric cellulose acetate membranes. In: Proceedings of the 6th international symposium in fresh water from sea, Athens

    Google Scholar 

  31. Judd S, Jefferson B (2003) Membrane for industrial wastewater recovery and re-use. Elsevier Advanced Technology, Oxford

    Google Scholar 

  32. Matsuura T (2001) Progress in membrane science and technology for seawater desalination a review. Desalination 134:47–54

    Article  CAS  Google Scholar 

  33. Dudley LY (1998) Membrane autopsies for reversing fouling in reverse osmosis. Membr Technol 95:9–12

    Google Scholar 

  34. Geisler P, Krumm W, Peters TA (2001) Reduction of the energy demand for seawater RO with the pressure exchange system PES. Desalination 135:205–210

    Article  CAS  Google Scholar 

  35. Winfield BA (1979) A Study of the factors affecting the rate of fouling of reverse osmosis membranes treating secondary sewage effluent. Water Res 13:565–569

    Article  CAS  Google Scholar 

  36. Weisner MR, Aptel P (1996) Mass transport and permeate flux and fouling in pressure-driven processes. In: Odendaal PE, Wiesner MR, Mallevialle J (eds) Water treatment membrane processes. McGraw-Hill Company, New York, pp 4.1–4.30

    Google Scholar 

  37. Lee S, Cho J, Elimelech M (2004) Influence of colloidal fouling and feed water recovery on salt rejection of RO and NF membranes. Desalination 160:1–12

    Article  CAS  Google Scholar 

  38. Winter H (1987) Control of organic fouling at two seawater reverse osmosis plants. Desalination 66:319–325

    Article  Google Scholar 

  39. Sadr Ghayeni SB, Beatson PJ, Schneider RP, Fane AG (1998) Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (ME-RO): preliminary performance data and microbiological aspects of system operation. Desalination 116:65–80

    Article  Google Scholar 

  40. Baker JS, Dudley LY (1998) Biofouling in membrane systems – a review. Desalination 118:81–90

    Article  CAS  Google Scholar 

  41. Wang LK (2006) Innovative ultraviolet, ion exchange, membrane and flotation technologies for water and wastewater treatment, National Engineers Week Seminar, Training Manual, National Association of Professional Engineers and Practicing Institute of Engineers, Albony, 12–14 February 2006

    Google Scholar 

  42. Bou-Hamad S, Abdel-Jawad M, Ebrahim S, Al-Mansour A, Al-Hijji A (1997) Performance evaluation of three different pretreatment systems for seawater reverse osmosis technique. Desalination 110:85–92

    Article  CAS  Google Scholar 

  43. Adin A, Klein-banay C (1986) Pretreatment of seawater by flocculation and settling for particulates removal. Desalination 58:227–241

    Article  CAS  Google Scholar 

  44. Taniguchi Y (1997) An overview of pretreatment technology for reverse osmosis desalination plants in Japan. Desalination 110:21–36

    Article  CAS  Google Scholar 

  45. Ebrahim S (1994) Cleaning and regeneration of membranes in desalination and wastewater applications: state-of-the-art. Desalination 96:225–238

    Article  CAS  Google Scholar 

  46. Yeatts LB, Lantz PM, Marshall WL (1974) Calcium sulfate solubility in brackish water concentrates and applications to reverse osmosis processes; polyphosphate additives. Desalination 15:177–192

    Article  CAS  Google Scholar 

  47. Amjad Z (1985) Applications of antiscalants to control calcium sulfate scaling in reverse osmosis systems. Desalination 54:263–276

    Article  CAS  Google Scholar 

  48. Reddy MM, Nancollas GH (1973) Calcite crystal growth inhibition by phosphonates. Desalination 12:61–73

    Article  CAS  Google Scholar 

  49. Butt FH, Rahman F, Baduruthamal U (1995) Pilot plant evaluation of advanced vs. conventional scale inhibitors for RO desalination. Desalination 103:189–198

    Article  CAS  Google Scholar 

  50. Pearce GK (2008) UF/MF pre-treatment to RO in seawater and wastewater reuse applications: a comparison of energy costs. Desalination 222:66–73

    Article  CAS  Google Scholar 

  51. Chua KT, Hawlader MNA, Malekb A (2003) Pretreatment of seawater: results of pilot trials in Singapore. Desalination 159:225–243

    Article  CAS  Google Scholar 

  52. Brehant A, Bonnelyeb V, Perez M (2002) Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination. Desalination 144:353–360

    Article  CAS  Google Scholar 

  53. Van Houtte E, Verbauwhede J, Vanlerberghe F, Demunter S, Cabooter J (1998) Treating different types of raw water with micro- and ultrafiltration for further desalination using reverse osmosis. Desalination 117:49–60

    Article  CAS  Google Scholar 

  54. Fane AG (1996) Membranes for water production and wastewater reuse. Desalination 106:1–9

    Article  CAS  Google Scholar 

  55. Kruithof JC, Schippers JC, Kamp PC, Folmer HC, Hofman JAMH (1998) Integrated multi-objective membrane systems for surface water treatment: pretreatment of reverse osmosis by conventional treatment and ultrafiltration. Desalination 117:37–48

    Article  CAS  Google Scholar 

  56. Hills P, Padley MB, Powell NI, Gallegher PM (1998) Effects of backwash conditions on out-to-in membrane microfiltration. Desalination 118:197–204

    Article  Google Scholar 

  57. Aptel P, Buckley CA (1996) Categories of membrane operations. In: Odendaal PE, Wiesner MR, Mallevialle J (eds) Water treatment membrane processes. McGraw-Hill, New York, pp 2.1–2.24

    Google Scholar 

  58. Buckley CA, Hurt QE (1996) Membrane applications: a contaminant-based perspective. In: Odendaal PE, Wiesner MR, Mallevialle J (eds) Water treatment membrane processes. McGraw-Hill, New York, pp 3.1–3.24

    Google Scholar 

  59. Jolis D, Hirano RA, Pitt PA, Müller A, Mamais D (1996) Assessment of tertiary treatment technology for water reclamation in San Francisco, California. Water Sci Technol 33:181–192

    Article  CAS  Google Scholar 

  60. Trägårdh G (1989) Membrane cleaning. Desalination 71:325–335

    Article  Google Scholar 

  61. Sheikholeslami R (1999) Fouling mitigation in membrane processes. Desalination 123:45–53

    Article  CAS  Google Scholar 

  62. Wilf M, Glueckstern P (1985) Restoration of commercial reverse osmosis membranes under field conditions. Desalination 54:343–350

    Article  CAS  Google Scholar 

  63. Graham SI, Reitz RL, Hickman CE (1989) Improving reverse osmosis performance by periodic cleaning. Desalination 74:113–124

    Article  CAS  Google Scholar 

  64. Ebrahim S, El-Dessouky H (1994) Evaluation of commercial cleaning agents for seawater reverse osmosis membranes. Desalination 99:169–188

    Article  CAS  Google Scholar 

  65. Ridgway HF, Justice CA, Whittaker C, Argo DG, Olson BH (1984) Biofilm fouling of RO membranes – its nature and effect on treatment of water reuse. J Am Water Works Assoc 76:94–102

    CAS  Google Scholar 

  66. Johnson J, Leahy M (1982) Development of new cleaning techniques for reverse osmosis membranes. OWRT Contract 14-340-001-8519, Office of Water Research and Technology, Washington

    Google Scholar 

  67. Wang LK, Kopko SP (1987) City of Cape Coral reverse osmosis water treatment facility. Technical report No. NTIS-PB97-139547. US Department of Commerce, National Technical Information Service, Springfield, VA.

    Google Scholar 

  68. Benko K, Pellegrino J, Price MK (2006) Measurement of water permeation kinetics across reverse osmosis and nanofiltration membranes-apparatus development. J Memb Sci 270:187–195

    Article  CAS  Google Scholar 

  69. AWWA (2006) Desalination of seawater and brackish water. American Water Works Association, Denver

    Google Scholar 

  70. Khawaji AD, Kutubkhanan IK, Wie JM (2008) Advances in seawater desalination technologies. Desalination 221:47–69

    Article  CAS  Google Scholar 

  71. Lattemann S, Hopner T (2008) Environmental impact and impact assessment of seawater desalination. Desalination 220:1–15

    Article  CAS  Google Scholar 

  72. Akgul D, Cakmakci M, Kayaalp N, Koyuncu I (2008) Cost analysis of seawater desalination with reverse osmosis in Turkey. Desalination 220:123–131

    Article  CAS  Google Scholar 

  73. Sun J, Wang Y, Xu S, Wang S (2008) Energy recovery device with a fluid switcher for seawater reverse osmosis system. Chin J Chem Eng 16(2):329–332

    Article  Google Scholar 

  74. Helal AM, Al-Malek SA, Al-Katheeri ES (2008) Economic feasibility of alternative designs of a PV-RO desalination unit for remote areas in the United Arab Emirates. Desalination 221:1–16

    Article  CAS  Google Scholar 

  75. Bruno JC, Lopez-Villada J, Letelier E, Romera S, Coronas A (2008) Modelling and optimization of solar organic rankine cycle engines for reverse osmosis desalination. Appl Therm Eng 28:2212–2226

    Article  CAS  Google Scholar 

  76. Folley M, Suarez BP, Whittaker T (2008) An autonomous wave-powered desalination system. Desalination 220:412–421

    Article  CAS  Google Scholar 

  77. Singh R (2008) Sustainable fuel cell integrated membrane desalination systems. Desalination 227:14–33

    Article  CAS  Google Scholar 

  78. Gandhidasan P, Al-Mojel SA (2009) Effect of feed pressure on the performance of the photovoltaic powered reverse osmosis seawater desalination system. Renewable Energy 34(12):2824–2830

    Article  CAS  Google Scholar 

  79. Charcosset C, Falconet C, Combe M (2009) Hydrostatic pressure plants for desalination via reverse osmosis. Renewable Energy 34(12):2878–2882

    Article  CAS  Google Scholar 

  80. Fujiwara N, Matsuyama H (2008) High recovery system in seawater reverse osmosis plants. J Appl Polym Sci 108:3403–3410

    Article  CAS  Google Scholar 

  81. Fujiwara N, Matsuyama H (2008) Optimization of the intermittent chlorine rejection (ICI) method for seawater desalination RO plants. Desalination 229:231–244

    Article  CAS  Google Scholar 

  82. Fujiwara N, Matsuyama H (2008) Elimination of biological fouling in seawater reverse osmosis desalination plants. Desalination 227:295–305

    Article  CAS  Google Scholar 

  83. Yang HL, Lin JC, Huang C (2009) Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res 43(15):3777–3786

    Article  CAS  PubMed  Google Scholar 

  84. Bonnelye V, Guey L, Del Castillo J (2008) UF/MF as RO pre-treatment: the real benefit. Desalination 222:59–65

    Article  CAS  Google Scholar 

  85. Peleka EN, Matis KA (2008) Application of flotation as a pretreatment process during desalination. Desalination 222:1–8

    Article  CAS  Google Scholar 

  86. Turek M, Bandura B, Dydo P (2008) Electrodialytic boron removal from SWRO permeate. Desalination 223:17–22

    Article  CAS  Google Scholar 

  87. Safrai I, Zask A (2008) Reverse osmosis desalination plants – marine environmentalist regulator point of view. Desalination 220:72–84

    Article  CAS  Google Scholar 

  88. Seader JD, Henley EJ (1998) Separation Process Principles. John Wiley & Sons, New York 920p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, J.P., Chian, E.S.K., Sheng, PX., Nanayakkara, K.G.N., Wang, L.K., Ting, YP. (2011). Desalination of Seawater by Reverse Osmosis. In: Wang, L.K., Chen, J.P., Hung, YT., Shammas, N.K. (eds) Membrane and Desalination Technologies. Handbook of Environmental Engineering, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-278-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-278-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-940-6

  • Online ISBN: 978-1-59745-278-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics