Skip to main content

Membrane Technologies for Point-of-Use and Point-of-Entry Applications

  • Chapter
  • First Online:
Membrane and Desalination Technologies

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 13))

  • 6231 Accesses

Abstract

Point-of-use (POU) system is the treatment process aimed to treat only water intended for direct consumption (drinking and cooking), typically at a single tap or limited number of taps. Point-of-entry (POE) treatment devices are typically installed to treat all water entering a single home, business, school, or facility. Reverse osmosis (RO) is recognized by the industry as one of the top POU and POE treatment technologies. This chapter describes the advantages and limitations in using RO for POU and POE applications. Types and configurations of reverse osmosis, and installation, operation and maintenance, and testing of RO are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. EPA (2009) Point-of-use or point-of-entry treatment options for small drinking water system, U.S. Environmental Protection Agency, Washington, DC. EPA 815-R-06-010

    Google Scholar 

  2. Pronk W, Zurbrügg C, Swartz C, Pronk W (2008) Decentralized systems for potable water and the potential of membrane technology. Water Res, doi:10.1016/j.watres.2008.10.030

    Google Scholar 

  3. Sobsey MD (2002) Managing water in the home: accelerated health gains from improved water supply. Water, sanitation and health. Department of Protection of the Human Environment, World Health Organization, Geneva, pp 1–70

    Google Scholar 

  4. Kaiser N, Liang K, Maertens M, Snider R (2007) BSF Evaluation Report: Summary of All Laboratory and Field Studies. Centre for Affordable Water and Sanitation Technology, Calgary, Alberta, Canada, http://www.cawst.org

  5. Clasen T, Brown J, Suntura O, Collin S (2004) Safe household water treatment and storage using ceramic drip filters: a randomised controlled trial in Bolivia. Water Sci Technol. 50(1):111–115

    CAS  PubMed  Google Scholar 

  6. WSC (2007) Water Systems Council, Wellcare Information sheets, Water Treatment. http://www.watersystemscouncil.org/wellcare/infosheets.cfm (accessed on Dec 10, 2008)

  7. Ecosoft (2007) Health and beauty filters. http://nashavoda.com.ua/en/main/ (accessed on Dec 10, 2008)

  8. LifeStraw (2008) Vestergaard Frandsen. http://www.vestergaard-frandsen.com/lifestraw.htm (accessed on Dec 10, 2008)

  9. Li XY, Chu HP (2003) Membrane bioreactor for the drinking water treatment of polluted surface water supplies. Water Res 37:4781–4791

    Article  CAS  PubMed  Google Scholar 

  10. Pillay VL (2006) Durban Institute of Technology (DIT), personal communication

    Google Scholar 

  11. Homespring (2007) GE Water & Process Technology. http://www.homespring.com (accessed on Dec 10, 2008)

  12. Wegelin M, Canonica S, Mechsner K, Fleischmann T, Pesaro F, Metzler A (1994) Solar water disinfection: scope of the process and analysis of radiation experiments. J Water Supply Res Technol-Aqua 43:154–169

    Google Scholar 

  13. Reed RH, Mani SK, Meyer V (2000) Solar photo-oxidative disinfection of drinking water: preliminary field observations. Lett Appl Microbiol 30:432–436

    Article  CAS  PubMed  Google Scholar 

  14. Mintz E, Bartram J, Lochery P, Wegelin M (2001) Not just a drop in the bucket: expanding access to point-of-use water treatment systems. Am J Public Health 91:1565–1570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Clasen T, Bastable A (2003) Faecal contamination of drinking water during collection and household storage: the need to extend protection to the point of use. J Water Health 1:109–115

    PubMed  Google Scholar 

  16. Huq A, Xu B, Chowdhury MAR, Islam MS, Montilla R, Colwell RR (1996) A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries. Appl Environ Microbiol 62:2508–2512

    CAS  PubMed  Google Scholar 

  17. Sobsey MD, Stauber CE, Casanova LM, Brown JM, Elliott MA (2008) Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ Sci Technol 42:4261–4267

    Article  CAS  PubMed  Google Scholar 

  18. Mohamed ES, Papadakis G, Mathioulakis E, Belessiotis V (2005) The effect of hydraulic energy recovery in a small sea water reverse osmosis desalination system; experimental and economical evaluation. Desalination 184:241–246

    Article  CAS  Google Scholar 

  19. Atikol U, Aybar HS (2005) Estimation of water production cost in the feasibility analysis of RO systems. Desalination 184:253–258

    Article  CAS  Google Scholar 

  20. Afonso MD, Jaber JO, Mohsen MS (2004) Brackish groundwater treatment by reverse osmosis in Jordan. Desalination 164:157–171

    Article  CAS  Google Scholar 

  21. Van der Bruggen B (2003) Desalination by distillation and by reverse osmosis – trends towards the future. Membr Technol 2:6–9

    Google Scholar 

  22. Madaeni SS, Koocheki S (2006) Application of taguchi method in the optimization of wastewater treatment using spiral-wound reverse osmosis element. Chem Eng J 119:37–44

    Article  CAS  Google Scholar 

  23. López-Ramírez JA, Oviedo MDC, Alonso JMQ (2006) Comparative studies of reverse osmosis membranes for wastewater reclamation. Desalination 191:137–147

    Article  Google Scholar 

  24. Suthanthararajan R, Ravindranath E, Chits K, Umamaheswari B, Ramesh T, Rajamam S (2004) Membrane application for recovery and reuse of water from treated tannery wastewater. Desalination 164:151–156

    Article  CAS  Google Scholar 

  25. Kim I-C, Lee K-H (2006) Dyeing process wastewater treatment using fouling resistant nanofiltration and reverse osmosis membranes. Desalination 192:246–251

    Article  CAS  Google Scholar 

  26. Jung Y-J, Kiso Y, Yamada T, Shibata T, Lee T-G (2006) Chemical cleaning of reverse osmosis membranes used for treating wastewater from a rolling mill process. Desalination 190:181–188

    Article  CAS  Google Scholar 

  27. Lee J-W, Kwon T-O, Moon I-S (2006) Performance of polyamide reverse osmosis membranes for steel wastewater reuse. Desalination 189:309–322

    Article  CAS  Google Scholar 

  28. Bódalo A, Gómez JL, Gómez E, Hidalgo AM, Alemán A (2005) Viability study of different reverse osmosis membranes for application in the tertiary treatment of wastes from the tanning industry. Desalination 180:277–284

    Article  Google Scholar 

  29. Into M, Jönsson A-S, Lengdén G (2004) Reuse of industrial wastewater following treatment with reverse osmosis. J Membr Sci 242:21–25

    Article  CAS  Google Scholar 

  30. Kneen B, Lemley A, Wagenet L (1995) Water treatment notes: reverse osmosis treatment of drinking water, Cornell Cooperative Extension, FACT SHEET 4

    Google Scholar 

  31. Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281:70–87

    Article  CAS  Google Scholar 

  32. Votta F, Barnett SM, Anderson DK (1974) Concentration of industrial waste by direct osmosis: completion report, Providence, RI

    Google Scholar 

  33. Anderson DK (1977) Concentration of Dilute Industrial Wastes by Direct Osmosis, University of Rhode Island, Providence

    Google Scholar 

  34. Holloway RW, Cath TY, Dennett KE, Childress AE (2005) Forward osmosis for concentration of anaerobic digester centrate, in: Proceedings of the AWWA membrane technology conference and exposition, Phoenix, AZ

    Google Scholar 

  35. Beaudry EG, Herron JR (1997) Direct osmosis for concentrating wastewater, in: Proceedings of the 27th international conference on environmental systems, Lake Tahoe, NV

    Google Scholar 

  36. York RJ, Thiel RS, Beaudry EG (1999) Full-scale experience of direct osmosis concentration applied to leachate management, in: Margherita di Pula S. (ed) Proceedings of the seventh international waste management and landfill symposium, Cagliari, Sardinia, Italy

    Google Scholar 

  37. Osmotek Inc (2003) Landfill leachate treatment. (http://www.rimnetics.com/osmotek.htm, Avaliable: 14 November 2006)

  38. Beaudry EG, Lampi KA (1990) Membrane technology for directs osmosis concentration of fruit juices. Food Technol 44:121

    Google Scholar 

  39. Dova MI, Petrotos KB, Lazarides HN (2007) On the direct osmotic concentration of liquid foods. Part I: Impact of process parameters on process performance. J Food Eng 78(2):422–430

    Google Scholar 

  40. Dova MI, Petrotos KB, Lazarides HN (2007) On the direct osmotic concentration of liquid foods: Part II. Development of a generalized model. J Food Eng 78(2):431–437

    Google Scholar 

  41. Jiao B, Cassano A, Drioli E (2004) Recent advances on membrane processes for the concentration of fruit juices: a review. J Food Eng 63:303–324

    Article  Google Scholar 

  42. Petrotos KB, Quantick PC, Petropakis H (1998) A study of the direct osmotic concentration of tomato juice in tubular membrane-module configuration. I. The effect of certain basic process parameters on the process performance. J Membr Sci 150:99–110

    Article  CAS  Google Scholar 

  43. Petrotos KB, Quantick PC, Petropakis H (1999) Direct osmotic concentration of tomato juice in tubular membrane-module configuration. II. The effect of using clarified tomato juice on the process performance. J Membr Sci 160:171–177

    Article  CAS  Google Scholar 

  44. Petrotos KB, Lazarides HN (2001) Osmotic concentration of liquid foods. J Food Eng 49:201–206

    Article  Google Scholar 

  45. Popper K, Camirand WM, Nury F, Stanley WL (1966) Dialyzer concentrates beverages. Food Eng. 38:102–104

    Google Scholar 

  46. Wrolstad RE, McDaniel MR, Durst RW, Micheals N, Lampi KA, Beaudry EG (1993) Composition and sensory characterization of red raspberry juice concentrated by direct-osmosis or evaporation. J Food Sci 58:633–637

    Article  CAS  Google Scholar 

  47. Beaudry EG, Herron JR, Peterson SW (1999) Direct osmosis concentration of waste water: final report, Osmotek Inc., Corvallis, OR

    Google Scholar 

  48. Cath TY, Gormly S, Beaudry EG, Adams VD, Childress AE (2005) Membrane contactor processes for wastewater reclamation in space. I. Direct osmotic concentration as pretreatment for reverse osmosis. J Membr Sci 257:85–98

    Article  CAS  Google Scholar 

  49. Cath TY, Adams VD, Childress AE (2005) Membrane contactor processes for wastewater reclamation in space. II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater. J Membr Sci 257:111–119

    Article  CAS  Google Scholar 

  50. Flynn M, Fisher J, Borchers B (1998) An evaluation of potential Mars transit vehicle water treatment systems, NASA Ames Research Center, Moffett Field, CA

    Book  Google Scholar 

  51. Kravath RE, Davis JA (1975) Desalination of seawater by direct osmosis. Desalination 16:151–155

    Article  CAS  Google Scholar 

  52. McCutcheon JR, McGinnis RL, Elimelech M (2005) A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. Desalination 174:1–11

    Article  CAS  Google Scholar 

  53. Cohen D (2004) Mixing moves osmosis technology forward, in: Chemical Processing magazine (http://www.chemicalprocessing.com/ articles/2004/346.html, Avaliable: 14 November 2006)

  54. Aaberg RJ (2003) Osmotic power – a new and powerful renewable energy source, ReFocus 4:48–50

    Article  Google Scholar 

  55. Jellinek HHG, Masuda H (1981) Osmo-power: theory and performance of an osmo-power pilot plant. Ocean Eng 8:103–128

    Article  Google Scholar 

  56. Lee KL, Baker RW, Lonsdale HK (1981) Membranes for power generation by pressure-retarded osmosis. J Membr Sci 8:141–171

    Article  CAS  Google Scholar 

  57. Loeb S (1975) Osmotic power plants. Science 189:654–655

    Article  CAS  PubMed  Google Scholar 

  58. Loeb S (1976) Production of energy from concentrated brines by pressureretarded osmosis. I. Preliminary technical and economic correlations. J Membr Sci 1:49–63

    Article  Google Scholar 

  59. Loeb S (1998) Energy production at the Dead Sea by pressure-retarded osmosis: challenge or chimera. Desalination 120:247–262

    Article  CAS  Google Scholar 

  60. Loeb S (2001) One hundred and thirty benign and renewable megawatts from Great Salt Lake. The possibilities of hydroelectric power by pressure retarded osmosis. Desalination 141:85–91

    Article  CAS  Google Scholar 

  61. Loeb S (2002) Large-scale power production by pressure-retarded osmosis using river water and sea water passing through spiral modules. Desalination 143:115–122

    Article  CAS  Google Scholar 

  62. Mehta GD (1982) Further results on the performance of present-day osmotic membranes in various osmotic regions. J Membr Sci 10:3–19

    Article  CAS  Google Scholar 

  63. Seppälä A, Lampinen MJ (1999) Thermodynamic optimizing of pressureretarded osmosis power generation systems. J Membr Sci 161:115–138

    Article  Google Scholar 

  64. Wick GL (1978) Energy from salinity gradients. Energy 3:95–100

    Article  CAS  Google Scholar 

  65. Mehta GD, Loeb S (1978) Internal polarization in the porous substructure of a semi-permeable membrane under pressure-retarded osmosis. J Membr Sci 4:261–265

    Article  CAS  Google Scholar 

  66. U.S. EPA (2005) Membrane filtration guidance manual, EPA 815-R-06-009, Office of Water

    Google Scholar 

  67. Nederlof MM, Kxuithof JC, Herman JAMH, de Koning M, van der Hoek J-P, Bonne PAC (1998) Integrated multi-objective membrane systems application of reverse osmosis at the Amsterdam Water Supply. Desalination 119:263–273

    Article  CAS  Google Scholar 

  68. Boerlage SFE, Kennedy MD, Bonne PAC, Galjaard NG, Schippers JC (1997) Prediction of flux decline in membrane systems due to particulate fouling. Desalination 113:231–233

    Article  CAS  Google Scholar 

  69. Butt FH, Rahman F, Baduruthamal U (1995) Identification of scale deposits through membrane autopsy. Desalination 101:219–230

    Article  CAS  Google Scholar 

  70. Graham SI, Reitz RL, Hickman CE (1989) Improving reverse osmosis performance through periodic cleaning. Desalination 74:113–124

    Article  CAS  Google Scholar 

  71. Hong S, Elimelech M (1997) Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J Membr Sci 132:159–181

    Article  CAS  Google Scholar 

  72. Griebe T, Flemming H-C (1998) Biocide-free antifouling strategy to protect RO membranes from biofouling. Desalination 118:153–156

    Article  CAS  Google Scholar 

  73. van der Kooij D, Veenendaal HR, Baars-Lorist C, van der Klift DW, Drost YC (1995) Biofilm formation on surfaces of glass and Teflon exposed to treated water. Water Res 29:1655–1662

    Article  Google Scholar 

  74. Donlan RM, Pipes WO (1988) Selected drinking water characteristics and attached microbial population density. J Am War Works Assoc 80:70–76

    CAS  Google Scholar 

  75. LeChevallier MW, Babcock TM, Lee RG (1987) Examination and characterization of distribution system biofilms. Appl Environ Microbiol 53:2714–2724

    CAS  PubMed Central  PubMed  Google Scholar 

  76. van der Wende E, Characklis WG, Smith DB (1989) Biofilms and bacterial drinking water quality. Water Res. 23:1313–1322

    Article  Google Scholar 

  77. Van der Kooij D (1992) Assimilable organic carbon as an indicator of bacterial regrowth. J Am Water Works Assoc 84:57–65

    Google Scholar 

  78. Srinivasan R, Stewart PS, Griebe T, Chen C-I, Xu X (1995) Biofilm parameters influencing biocide efficacy. Biotechnol Bioeng 46:553–560

    Article  CAS  PubMed  Google Scholar 

  79. The Dow Chemical Company (2006) Liquid separations. (http://www.dow.com/liquidseps/service/lm_feas.htm

  80. Wang LK, Wang MHS, Suozzo T, Dixon RA, Wright TL, Sarraino S (2009) Chemical and Biochemical Technologies for Environmental Infrastructure Sustainability. 2009 National Engineers Week Conference, Albany Marriott, Albany, NY. Feb. 5–6

    Google Scholar 

  81. Andrew R (2009) POU and POE standards in Canada. Water Conditioning Purif 51(9):6–58

    Google Scholar 

  82. Andrew R (2007) Point of entry systems and the NSF/ANSI standards. Water Conditioning Purif 49(10):6–88

    Google Scholar 

  83. Wolfe C (2009) Water purifiers keep army moving. Water Conditioning Purif 51(8):44–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kajitvichyanukul, P., Hung, YT., Wang, L.K. (2011). Membrane Technologies for Point-of-Use and Point-of-Entry Applications. In: Wang, L.K., Chen, J.P., Hung, YT., Shammas, N.K. (eds) Membrane and Desalination Technologies. Handbook of Environmental Engineering, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-278-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-278-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-940-6

  • Online ISBN: 978-1-59745-278-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics