Skip to main content

Involvement of km23 Dynein Light Chains in TGF β Signaling

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume I

Abstract

We have identified km23-1 and km23-2 as TGF-β signaling intermediates that are also light chains of the minus-end directed motor protein dynein. The km23/LC7/robl dynein light chains (DLCs) belong to an ancient superfamily of proteins, known as the MglB superfamily. Our NMR structural studies demonstrate that km23-1 adopts the structure of a stable homodimer, similar to that of the p14/MAPK scaffolding protein (MP1) heterodimer. Furthermore, our results suggest that km23-1/km23-2 may function as motor receptors to recruit Smads2/3 to the dynein motor complex for endosomal transport, prior to Smad nuclear translocation. Thus, TGF-β signaling endosomes may be natural cargo of the dynein complex. Here, we present a model for how km23 family members may function as motor receptors, and describe the evidence that we have accumulated thus far to support such a model. For example, we have demonstrated that the kinase activity of TGF-β receptor RII directly phosphorylates km23-1 on specific serine residues, resulting in attachment of the km23 DLCs to the rest of the multi-subunit dynein complex. This dynein binding function of km23 appears to be required for the endosomal transport of TGF-β signaling components, because disruption of the motor complex blocks transcriptional effects of TGF-β downstream. Alterations in km23-1 found in the ovarian cancer patients appear to modify km23-1 functions in both binding to the dynein motor complex and TGF-β signaling. In addition, forced expression of km23-1 in ovarian cancer cells suppresses their growth in vitro, and tumorgenesis in vivo, by increasing the number of cells in the G2/M phase of the cell cycle. Our results implicate km23-1 as a novel, TGF β-related anti-cancer target for the development of diagnostics and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massagué J, Blain SW, Lo RS. TGF-β signaling in growth control, cancer, and heritable disorders. Cell 2000;103:295–309.

    Article  PubMed  Google Scholar 

  2. Yue J, Mulder KM. Transforming growth factor-β signal transduction in epithelial cells. Pharmacol Ther 2001;91:1–34.

    Article  CAS  PubMed  Google Scholar 

  3. Shi YG, Massagué J. Mechanism of TGF-β signaling from cell membrane to the nucleus. Cell 2003; 113:685–700.

    Article  CAS  PubMed  Google Scholar 

  4. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF β-family signaling. Nature 2003;425:577–584.

    Article  CAS  PubMed  Google Scholar 

  5. Attisano L, Wrana JL. Signal transduction by the TGF-β superfamily. Science 2002;296:1646–1647.

    Article  CAS  PubMed  Google Scholar 

  6. Hartsough MT, Mulder KM. Transforming growth factor β activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem 1995;270:7117–7124.

    Article  CAS  PubMed  Google Scholar 

  7. Frey RS, Mulder KM. TGF β regulation of mitogen-activated protein kinases in human breast cancer cells. Cancer Lett 1997;117:41–50.

    Article  CAS  PubMed  Google Scholar 

  8. Frey RS, Mulder KM. Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase/Jun N-terminal kinase activation by transforming growth factor β in the negative growth control of breast cancer cells. Cancer Res 1997;57:628–633.

    CAS  PubMed  Google Scholar 

  9. Hartsough MT, Frey RS, Zipfel PA, et al. Altered transforming growth factor signaling in epithelial cells when ras activation is blocked. J Biol Chem 1996;271:22,368–22,375.

    Article  CAS  PubMed  Google Scholar 

  10. Yue J, Buard A, Mulder KM. Blockade of TGF β3 up-regulation of p27Kip1 and p21Cip1 by expression of RasN17 in epithelial cells. Oncogene 1998;17:47–55.

    Article  CAS  PubMed  Google Scholar 

  11. Atfi A, Djelloul S, Chastre E, Davis R, Gespach C. Evidence for a role of Rho-like GTPases and stress-activated protein inase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor β-mediated signaling. J Biol Chem 1997;272:1429–1432.

    Article  CAS  PubMed  Google Scholar 

  12. Hartsough MT, Mulder KM. Transforming growth factor-β signaling in epithelial cells. Pharmacol Ther 1997;75:21–41.

    Article  CAS  PubMed  Google Scholar 

  13. Hocevar BA, Brown TL, Howe PH. TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 1999;18:1345–1356.

    Article  CAS  PubMed  Google Scholar 

  14. Ravanti L, Hakkinen L, Larjava H, et al. Transforming growth factor-β induces collagenase-3 expression by human gingival fibroblasts via p38 mitogen-activated protein kinase. J Biol Chem 1999;274:37,292–37,300.

    Article  CAS  PubMed  Google Scholar 

  15. Adachi-Yamada T, Nakamura M, Irie K, et al. p38 mitogen-activated protein kinase can be involved in transforming growth factor β superfamily signal transduction in Drosophila wing morphogenesis. Mol Cell Biol 1999;19:2322–2329.

    CAS  PubMed  Google Scholar 

  16. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J Biol Chem 1999;274:27,161–27,167.

    Article  CAS  PubMed  Google Scholar 

  17. Mulder KM, Morris SL. Activation of p21ras by transforming growth factor β in epithelial cells. J Biol Chem 1992;267:5029–5031.

    CAS  PubMed  Google Scholar 

  18. Mulder KM. Role of Ras and Mapks in TGF β signaling. Cytokine Growth Factor Rev 2000;11:23–35.

    Article  CAS  PubMed  Google Scholar 

  19. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. SARA, a FYVE domain protein that recruits Smad2 to the TGF β receptor. Cell 1998;95:779–791.

    Article  CAS  PubMed  Google Scholar 

  20. Hocevar BA, Smine A, Xu X-X, Howe PH. The adaptor molecule Disabled-2 links the transforming growth factor β receptors to the Smad pathway. EMBO J 2001;20:2789–2801.

    Article  CAS  PubMed  Google Scholar 

  21. Wurthner JU, Frank DB, Felici A, et al. Transforming growth factor-β receptor-associated protein 1 is a Smad4 chaperone. J Biol Chem 2001;276:19,495–19,502.

    Article  CAS  PubMed  Google Scholar 

  22. Felici A, Wurthner JU, Parks WT, et al. TLP, a novel modulator of TGF-β signaling, has opposite effects on Smad2-and Smad3-dependent signaling. EMBO J 2003;22:4465–4477.

    Article  CAS  PubMed  Google Scholar 

  23. Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA. TGF-β-induced apoptosis is mediated by the adaptor protein Daxx that facilitates JNK activation. Nat Cell Biol 2001;8:708–714.

    Article  Google Scholar 

  24. Wang D, Kanuma T, Mizunuma H, et al. Analysis of specific gene mutations in the transforming growth factor-β signal transduction pathway in human ovarian cancer. Cancer Res 2000;60:4507–4512.

    CAS  PubMed  Google Scholar 

  25. Chen RH, Miettinen PJ, Maruoka EM, Choy L, Derynck R. A WD-domain protein that is associated with and phosphorylated by the type II TGF-β receptor. Nature 1995;377:548–552.

    Article  CAS  PubMed  Google Scholar 

  26. Griswold-Prenner I, Kamibayashi C, Maruoka EM, Mumby MC, Derynck R. Physical and functional interactions between type I transforming growth factor β receptors and Balpha, a WD-40 repeat subunit of phosphatase 2A. Mol Cell Biol 1998;18:6595–6604.

    CAS  PubMed  Google Scholar 

  27. Ding W, Mulder KM. km23: A novel TGF β signaling target altered in ovarian cancer. In: Molecular Targeting and Signal Transduction (Kumar R. ed.), pp. 315–327. Kluwer Academic Publishers, Norwell, MA 2004.

    Chapter  Google Scholar 

  28. Tang Q, Staub CM, Gao G, et al. A novel transforming growth factor-β receptor-interacting protein that is also a light chain of the motor protein dynein. Mol Biol Cell 2002;13:4484–4496.

    Article  CAS  PubMed  Google Scholar 

  29. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 1998;279:519–526.

    Article  CAS  PubMed  Google Scholar 

  30. King SJ, Bonilla M, Rodgers ME, Schroer TA. Subunit organization in cytoplasmic dynein subcomplexes. Protein Sci 2002;11:1239–1250.

    Article  CAS  PubMed  Google Scholar 

  31. Vale RD. The molecular motor toolbox for intracellular transport, Cell 2003;112:467–480.

    Article  CAS  PubMed  Google Scholar 

  32. Vallee RB, Williams JC, Varma D, Barnhart LE. Dynein: An ancient motor protein involved in multiple modes of transport. J Neurobiol 2004;58:189–200.

    Article  CAS  PubMed  Google Scholar 

  33. Kamal A, Goldstein LS. Principles of cargo attachment to cytoplasmic motor proteins. Curr Opin Cell Biol 2002;14:63–68.

    Article  CAS  PubMed  Google Scholar 

  34. Mallik R, Gross SP. Molecular motors: strategies to get along. Curr Biol 2004;14:R971–R982.

    Article  CAS  PubMed  Google Scholar 

  35. Williams JC, Xie H, Hendrickson WA. Crystal structure of dynein light chain TcTex-1. J Biol Chem 2005;280:21,981–21,986.

    Article  CAS  PubMed  Google Scholar 

  36. Wu H, Maciejewski MW, Takebe S, King SM. Solution structure of the Tctex1 dimer reveals a mechanism for dynein-cargo interactions. Structure (Camb) 2005;13:213–223.

    Article  CAS  Google Scholar 

  37. Susalka SJ, Nikulina K, Salata MW, et al. The roadblock light chain binds a novel region of the cytoplasmic Dynein intermediate chain. J Biol Chem 2002;277:32,939–32,946.

    Article  CAS  PubMed  Google Scholar 

  38. Jaffrey SR, Snyder SH. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science 1996;274:774–777.

    Article  CAS  PubMed  Google Scholar 

  39. Fan JS, Zhang Q, Li M, et al. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. J Biol Chem 1998;273:33,472–33,481.

    Article  CAS  PubMed  Google Scholar 

  40. Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 1999;3:287–296.

    Article  CAS  PubMed  Google Scholar 

  41. Vadlamudi RK, Bagheri-Yarmand R, Yang Z, et al. Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell 2004;5:575–585.

    Article  CAS  PubMed  Google Scholar 

  42. Tai AW, Chuang JZ, Bode C, Wolfrum U, Sung CH. Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 1999;97:877–887.

    Article  CAS  PubMed  Google Scholar 

  43. Machado RD, Rudarakanchana N, Atkinson C, et al. Functional interaction between BMPR-II and Tctex-1, a light chain of Dynein, is isoform-specific and disrupted by mutations underlying primary pulmonary hypertension. Hum Mol Genet 2003;12:3277–3286.

    Article  CAS  PubMed  Google Scholar 

  44. Sugai M, Saito M, Sukegawa I, et al. PTH/PTH-related protein receptor interacts directly with Tctex-1 through its COOH terminus. Biochem Biophys Res Commun 2003;311:24–31.

    Article  CAS  PubMed  Google Scholar 

  45. Yano H, Lee FS, Kong H, et al. Association of Trk neurotrophin receptors with components of the cytoplasmic dynein motor. J Neurosci 2001;21:1–7.

    Google Scholar 

  46. Mueller S, Cao XM, Welker R, Wimmer E. Interaction of the poliovirus receptor CD155 with the dynein light chain Tctex-1 and its implication for poliovirus pathogenesis. J Biol Chem 2002;277:7897–7904.

    Article  CAS  PubMed  Google Scholar 

  47. Douglas MW, Diefenbach RJ, Homa FL, et al. Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport. J Biol Chem 2004;279:28,522–28,530.

    Article  CAS  PubMed  Google Scholar 

  48. Ilangovan U, Ding W, Zhong Y, et al. Structure and dynamics of the homodimeric dynein Light Chain km23. J Mol Biol 2005;352:338–354.

    Article  CAS  PubMed  Google Scholar 

  49. Jin Q, Gao G, Mulder KM. Requirement of a new dynein light chain in Smad3-dependent TGF β signaling. Submitted 2006.

    Google Scholar 

  50. Bowman AB, Patel-King RS, Benashski SE, McCaffery JM, Goldstein LS, King SM. Drosophila roadblock and Chlamydomonas LC7: a conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J Cell Biol 1999;146:165–180.

    CAS  PubMed  Google Scholar 

  51. Koonin EV, Aravind L. Dynein light chains of the Roadblock/LC7 group belong to an ancient protein superfamily implicated in NTPase regulation. Curr Biol 2000;10:R774–R776.

    Article  CAS  PubMed  Google Scholar 

  52. Lunin VV, Munger C, Wagner J, Ye Z, Cygler M, Sacher M. The structure of the MAPK scaffold, MP1, bound to its partner, p14. A complex with a critical role in endosomal MAP kinase signaling. J Biol Chem 2004;279:23,422–23,430.

    Article  CAS  PubMed  Google Scholar 

  53. Kurzbauer R, Teis D, de Araujo ME, et al. Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proc Natl Acad Sci USA 2004;101:10,984–10,989.

    Article  CAS  PubMed  Google Scholar 

  54. Nikulina K, Patel-King RS, Takebe S, Pfister KK, King SM. The Roadblock light chains are ubiquitous components of cytoplasmic dynein that form homo-and heterodimers. Cell Motil Cytoskeleton 2004; 57:233–245.

    Article  CAS  PubMed  Google Scholar 

  55. Jin Q, Ding W, Staub CM, Gao G, Tang Q, Mulder KM. Requirement of km23 for TGF β-mediated growth inhibition and induction of fibronectin expression. Cell Signal 2005;17:1363–1372.

    Article  CAS  PubMed  Google Scholar 

  56. Yue J, Mulder KM. Requirement of Ras/MAPK pathway activation by transforming growth factor β for transforming growth factor β1 production in a Smad-dependent pathway. J Biol Chem 2000;275:30,765–30,773.

    Article  CAS  PubMed  Google Scholar 

  57. Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001;29:117–129.

    Article  CAS  PubMed  Google Scholar 

  58. Attisano L, Wrana JL. Mads and Smads in TGF β signalling. Curr Opin in Cell Biol 1998;10:188–194.

    Article  CAS  Google Scholar 

  59. Massagué J. TGF-β signal transduction Annu Rev Biochem 1998;67:753–791.

    Article  PubMed  Google Scholar 

  60. Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 1997;139:469–484.

    Article  CAS  PubMed  Google Scholar 

  61. Lynch MA, Nakashima R, Song H, et al. Mutation analysis of the transformation growth factor β receptor type II gene in human ovarian carcinoma. Cancer Res 1998;58:4227–4232.

    CAS  PubMed  Google Scholar 

  62. Chen T, Triplett J, Dehner B, et al. Transforming growth factor-β receptor type I gene is frequently mutated in ovarian carcinomas. Cancer Res 2001;61:4679–4682.

    CAS  PubMed  Google Scholar 

  63. Ding W, Tang Q, Espina V, Liotta LA, Mauger DT, Mulder KM. A transforming growth factor-β receptor-interacting protein frequently mutated in human ovarian cancer. Cancer Res 2005;65:6526–6533.

    Article  CAS  PubMed  Google Scholar 

  64. Paige AJW, Taylor KJ, Stewart A, et al. A.700 kb physical map of a region of 16q23.2 homozygously deleted in multiple cancers and spanning the common fragile site FRA16D. Cancer Res 2000;60:1690–1696.

    CAS  PubMed  Google Scholar 

  65. Balsara BR, Pei J, De Rienzo A, et al. Human hepatocellular carcinoma is characterized by a highly consistent pattern of genomic imbalances, including frequent loss of 16q23.1-24.1. Genes Chromosomes Cancer 2001;30:245–253.

    Article  CAS  PubMed  Google Scholar 

  66. Yakicier MC, Legoix P, Vaury C, et al. Identification of homozygous deletions at chromosome 16q23 in aflatoxin B1 exposed hepatocellular carcinoma. Oncogene 2001;20:5232–5238.

    Article  CAS  PubMed  Google Scholar 

  67. Boyd FT, Massagué J. Transforming growth factor-β inhibition of epithelial cell proliferation linked to the expression of a 53-kDa membrane receptor. J Biol Chem 1989;264:2272–2278.

    CAS  PubMed  Google Scholar 

  68. Laiho M, Weis FM, Boyd FT, Ignotz RA, Massagué J. Responsiveness to transforming growth factor-β (TGF-β) restored by genetic complementation between cells defective in TGF-β receptors I and II. J Biol Chem 1991;266:9108–9112.

    CAS  PubMed  Google Scholar 

  69. Laiho M, Weis MB, Massagué J. Concomitant loss of transforming growth factor (TGF)-β receptor types I and II in TGF-β-resistant cell mutants implicates both receptor types in signal transduction. J Biol Chem 1990;265:18,518–18,524.

    CAS  PubMed  Google Scholar 

  70. Remy I, Montmarquette A, Michnick SW. PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3. Nat Cell Biol 2004;6:358–365.

    Article  CAS  PubMed  Google Scholar 

  71. Jin Q, Ding W, Mulder KM. Requirement for DYNLRB1/km23 in a TGF β-dependent Smad2 signaling pathway. J Biol Chem In revision. (2005).

    Google Scholar 

  72. von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Bottinger EP. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor β. J Biol Chem 2000;275:11,320–11,326.

    Article  Google Scholar 

  73. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998;17:3091–3100.

    Article  CAS  PubMed  Google Scholar 

  74. Anders RA, Arline SL, Dore JJE, Jr., Leof EB. Distinct endocytic responses of heteromeric and homomeric transforming growth factor β receptors. Mol. Biol. Cell 1997;11:2133–2143.

    Google Scholar 

  75. Anders RA, Dore JJE, Jr., Arline SL, Garamszegi N, Leof EB. Differential requirement for type I and type II transforming growth factor β receptor kinase activity in ligand-mediated receptor endocytosis. J Biol Chem 1998;273:23,118–23,125.

    Article  CAS  PubMed  Google Scholar 

  76. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 2003;5:382–384.

    Article  Google Scholar 

  77. Hayes S, Chawla A, Corvera S. TGF β receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 2002;158:1239–1249.

    Article  CAS  PubMed  Google Scholar 

  78. Runyan CE, Schnaper HW, Poncelet AC. The role of internalization in transforming growth factor β1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells. J Biol Chem 2005;280:8300–8308.

    Article  CAS  PubMed  Google Scholar 

  79. Felici A, Wurthner JU, Parks WT, et al. TLP, a novel modulator of TGF-β signaling, has opposite effects on Smad2-and Smad3-dependent signaling. EMBO J 2003;22:4465–4477.

    Article  CAS  PubMed  Google Scholar 

  80. Goltz JS, Wolkoff AW, Novikoff PM, Stockert RJ, Satir P. A role for microtubules in sorting endocytic vesicles in rat hepatocytes. Proc Natl Acad Sci USA 1992;89:7026–7030.

    Article  CAS  PubMed  Google Scholar 

  81. Oda H, Stockert RJ, Collins C, et al. Interaction of the microtubule cytoskeleton with endocytic vesicles and cytoplasmic dynein in cultured rat hepatocytes. J Biol Chem 1995;270:15,242–15,249.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Jin, Q., Gao, G., Mulder, K.M. (2008). Involvement of km23 Dynein Light Chains in TGF β Signaling. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics