Skip to main content

Visual Transduction and Age-Related Changes in Lipofuscin

  • Chapter
Visual Transduction and Non-Visual Light Perception

Part of the book series: Ophthalmology Research ((OPHRES))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terman A, Gustafsson B, Brunk UT. The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chem-Biol Interact 2006;163:29–37.

    PubMed  CAS  Google Scholar 

  2. Keller JN, Dimayuga E, Chen QH, Thorpe J, Gee J, Ding Q. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol 2004;36:2376–2391.

    PubMed  CAS  Google Scholar 

  3. Katz ML, Robison WG. What is lipofuscin? Defining characteristics and differentiation from other autofluoreseent lysosomal storage bodies. Arch Gerontol Geriatr 2002;34:169–184.

    PubMed  CAS  Google Scholar 

  4. Eldred GE. Lipofuscin and other lysosomal storage deposits in the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ, eds. The retinal pigment epithelium function and disease. New York: Oxford University Press; 1998:651–668.

    Google Scholar 

  5. Yin DZ. Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radic Biol Med 1996;21:871–888.

    PubMed  CAS  Google Scholar 

  6. Stroikin Y, Dalen H, Brunk UT, Terman A. Testing the “garbage” accumulation theory of ageing: mitotic activity protects cells from death induced by inhibition of autophagy. Biogerontology 2005;6:39–47.

    PubMed  CAS  Google Scholar 

  7. Sullivan PG, Dragicevic NB, Deng JH, et al. Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem 2004;279:20699–20707.

    PubMed  CAS  Google Scholar 

  8. Powell SR, Wang P, Divald A, et al. Aggregates of oxidized proteins (lipofuscin) induce apoptosis through proteasome inhibition and dysregulation of proapoptotic proteins. Free Radic Biol Med 2005;38:1093–1101.

    PubMed  CAS  Google Scholar 

  9. Sitte N, Huber M, Grune T, et al. Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J 2000;14:1490–1498.

    PubMed  CAS  Google Scholar 

  10. Chowdhury PK, Halder M, Choudhury PK, et al. Generation of fluorescent adducts of malondialdehyde and amino acids: Toward an understanding of lipofuscin. Photochem Photobiol 2004;79:21–25.

    PubMed  CAS  Google Scholar 

  11. Feeney-Burns L, Hilderbrand ES, Eldridge S. Aging human RPR—morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 1984;25:195–200.

    PubMed  CAS  Google Scholar 

  12. Delori FC, Goger DG, Dorey CK. Age-related accumulation and spatial distribution of lipo-fuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci 2001;42:1855–1866.

    PubMed  CAS  Google Scholar 

  13. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005;85: 845–881.

    PubMed  CAS  Google Scholar 

  14. Weiter JJ, Delori FC, Wing GL, Fitch KA. Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 1986;27:145–152.

    PubMed  CAS  Google Scholar 

  15. von Ruckmann A, Fitzke FW, Bird AC. Distribution of pigment epithelium autofluorescence in retinal disease state recorded in vivo and its change over time. Graefes Arch Clin Exp Ophthalmol 1999;237:1–9.

    Google Scholar 

  16. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in the aging retina—relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 1989;30:1691–1699.

    PubMed  CAS  Google Scholar 

  17. Wing GL, Blanchard GC, Weiter JJ. The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1978;17:601–607.

    PubMed  CAS  Google Scholar 

  18. Birnbach CD, Jarvelainen M, Possin DE, Milam AH. Histopathology and immunocyto-chemistry of the neurosensory retina in fundus flavimaculatus. Ophthalmology 1994;101: 1211–1219.

    PubMed  CAS  Google Scholar 

  19. Delaey JJ, Verougstraete C. Hyperlipofuscinosis and subretinal fibrosis in Stargardts disease. Retin-J Retin Vitr Dis 1995;15:399–406.

    CAS  Google Scholar 

  20. Lorenz B, Preising MN. Best's disease. Overview of pathology and its causes. Ophthalmol-oge 2005;102:111–115.

    CAS  Google Scholar 

  21. Bergsma DR, Wiggert BN, Funahashi M, Kuwabara T, Chader CJ. Vitamin A receptors in normal and dystrophic human retina. Nature 1977;265:66–67.

    PubMed  CAS  Google Scholar 

  22. Kolb H, Gouras P. Electron microscopic observations of human retinitis pigmentosa, dominantly inherited. Invest Ophthalmol 1974;13:487–498.

    PubMed  CAS  Google Scholar 

  23. Smith RT, Chan JK, Busuoic M, Sivagnanavel V, Bird AC, Chong NV. Autofluorescence characteristics of early, atrophic, and high-risk fellow eyes in age-related macular degeneration. Invest Ophthalmol Vis Sci 2006;47:5495–5504.

    PubMed  Google Scholar 

  24. Roth F, Bindewald A, Holz FG. Key pathophysiologic pathways in age-related macular disease. Graefes Arch Clin Exp Ophthalmol 2004;242:710–716.

    PubMed  Google Scholar 

  25. Curcio CA. Photoreceptor topography in ageing and age-related maculopathy. Eye 2001; 15:376–383.

    PubMed  CAS  Google Scholar 

  26. Kliffen M, VanderSchaft TL, Mooy CM, deJong P. Morphologic changes in age-related maculopathy. Microsc Res Tech 1997;36:106–122.

    PubMed  CAS  Google Scholar 

  27. Bazan HEP, Bazan NG, Feeneyburns L, Berman ER. Lipids in human lipofuscin-enriched subcellular-fractions of 2 age populations—comparison with rod outer segments and neural retina. Invest Ophthalmol Vis Sci 1990;31:1433–1443.

    PubMed  CAS  Google Scholar 

  28. Schutt F, Bergmann M, Holz FG, Kopitz J. Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes. Graefes Arch Clin Exp Ophthalmol 2002;240:983–988.

    PubMed  Google Scholar 

  29. Warburton S, Southwick K, Hardman RM, et al. Examining the proteins of functional retinal lipofuscin using proteomic analysis as a guide for understanding its origin. Mol Vis 2005;11:1122–1134.

    PubMed  CAS  Google Scholar 

  30. Gugiu BG, Rozanowska M, Rozanowski B, et al. Proteomic and ultrastructural analyses of human lipofuscin. Invest Ophthalmol Vis Sci 2005;46.

    Google Scholar 

  31. Eldred GE, Katz ML. Fluorophores of the human retinal-pigment epithelium—separation and spectral characterization. Exp Eye Res 1988;47:71–86.

    PubMed  CAS  Google Scholar 

  32. Eldred GE, Lasky MR. Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 1993;361:724–726.

    PubMed  CAS  Google Scholar 

  33. Rozanowska M, Pawlak A, Rozanowski B, et al. Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroform-insoluble components. Invest Ophthalmol Vis Sci 2004;45:1052–1060.

    PubMed  Google Scholar 

  34. Schutt F, Bergmann M, Holz FG, Kopitz J. Proteins modified by malondialdehyde, 4-hydrox-ynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2003;44:3663–3668.

    PubMed  Google Scholar 

  35. Sakai N, Decatur J, Nakanishi K, Eldred GE. Ocular age pigment “A2-E”: an unprecedented pyridinium bisretinoid. J Am Chem Soc 1996;118:1559–1560.

    CAS  Google Scholar 

  36. Davies S, Elliott MH, Floor E, et al. Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic Biol Med 2001;31:256–265.

    PubMed  CAS  Google Scholar 

  37. Fishkin NE, Sparrow JR, Allikmets R, Nakanishi K. Isolation and characterization of a retinal pigment epithelial cell fluorophore: an all-trans-retinal dimer conjugate. Proc Natl Acad Sci U S A 2005;102:7091–7096.

    PubMed  CAS  Google Scholar 

  38. Fishkin N, Jang YP, Itagaki Y, Sparrow JR, Nakanishi K. A2-Rhodopsin: a new fluorophore isolated from photoreceptor outer segments. Org Biomol Chem 2003;1:1101–1105.

    PubMed  CAS  Google Scholar 

  39. Hammer M, Richter S, Guehrs KH, Schweitzer D. Retinal pigment epithelium cell damage by A2-E and its photo-derivatives. Mol Vis 2006;12:1348–1354.

    PubMed  CAS  Google Scholar 

  40. Gaillard ER, Avalle LB, Keller LMM, Wang Z, Reszka KJ, Dillon JP. A mechanistic study of the photooxidation of A2E, a component of human retinal lipofuscin. Exp Eye Res 2004;79:313–319.

    PubMed  CAS  Google Scholar 

  41. Avalle LB, Wang Z, Dillon JP, Gaillard ER. Observation of A2E oxidation products in human retinal lipofuscin. Exp Eye Res 2004;78:895–898.

    PubMed  CAS  Google Scholar 

  42. Dillon J, Wang Z, Avalle LB, Gaillard ER. The photochemical oxidation of A2E results in the formation of a 5,8,5′,8′-bis-furanoid oxide. Exp Eye Res 2004;79:537–542.

    PubMed  CAS  Google Scholar 

  43. Jang YP, Matsuda H, Itagaki Y, Nakanishi K, Sparrow JR. Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin. J Biol Chem 2005;280:39732–39739.

    PubMed  CAS  Google Scholar 

  44. Wang Z, Keller LMM, Dillon J, Gaillard ER. Oxidation of A2E results in the formation of highly reactive aldehydes and ketones. Photochem Photobiol 2006;82:1251–1257.

    PubMed  CAS  Google Scholar 

  45. Docchio F, Boulton M, Cubeddu R, Ramponi R, Barker PD. Age-related-changes in the fluorescence of melanin and lipofuscin granules of the retinal-pigment epithelium—a time-resolved fluorescence spectroscopy study. Photochem Photobiol 1991;54:247–253.

    PubMed  CAS  Google Scholar 

  46. Cubeddu R, Docchio F, Ramponi R, Boulton M. Time-resolved fluorescence spectros-copy of the retinal-pigment epithelium—age-related studies. IEEE J Quantum Electron 1990;26:2218–2225.

    CAS  Google Scholar 

  47. Boulton M, Docchio F, Dayhawbarker P, Ramponi R, Cubeddu R. Age-related-changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal-pigment epithelium. Vision Res 1990;30:1291–1303.

    PubMed  CAS  Google Scholar 

  48. Gaillard ER, Atherton SJ, Eldred G, Dillon J. Photophysical studies on human retinal lipo-fuscin. Photochem Photobiol 1995;61:448–453.

    PubMed  CAS  Google Scholar 

  49. Lamb LE, Zareba M, Plakoudas SN, Sarna T, Simon JD. Retinyl palmitate and the blue-light-induced phototoxicity of human ocular lipofuscin. Arch Biochem Biophys 2001;393: 316–320.

    PubMed  CAS  Google Scholar 

  50. Lamb LE, Ye T, Haralampus-Grynaviski NM, et al. Primary photophysical properties of A2E in solution. J Phys Chem B 2001;105:11507–11512.

    CAS  Google Scholar 

  51. Haralampus-Grynaviski NM, Lamb LE, Clancy CMR, et al. Spectroscopic and morphological studies of human retinal lipofuscin granules. Proc Natl Acad Sci U S A 2003;100: 3179–3184.

    PubMed  CAS  Google Scholar 

  52. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. In-vivo fluorescence of the ocular fundus exhibits retinal-pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 1995;36:718–729.

    PubMed  CAS  Google Scholar 

  53. Bindewald-Wittich A, Han M, Schmitz-Valckenberg S, et al. Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti: sapphire laser. Invest Ophthalmol Vis Sci 2006;47:4553–4557.

    PubMed  Google Scholar 

  54. Delori FC. Autofluorescence method to measure macular pigment optical densities fluorometry and autofluorescence imaging. Arch Biochem Biophys 2004;430:156–162.

    PubMed  CAS  Google Scholar 

  55. Mata NL, Weng J, Travis GH. Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci U S A 2000;97:7154–7159.

    PubMed  CAS  Google Scholar 

  56. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 1999;40: 2988–2995.

    PubMed  CAS  Google Scholar 

  57. Feeney-Burns L, Berman ER, Rothman H. Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 1980;90:783–791.

    PubMed  CAS  Google Scholar 

  58. Rozanowska M, Sarna T. Light-induced damage to the retina: role of rhodopsin chromo-phore revisited. Photochem Photobiol 2005;81:1305–1330.

    PubMed  CAS  Google Scholar 

  59. Kennedy CJ, Rakoczy PE, Constable IJ. Lipofuscin of the retinal pigment epithelium: a review. Eye 1995;9:763–771.

    PubMed  Google Scholar 

  60. Rodieck RW. The first steps in seeing. Sunderland, MA: Sinauer; 1998.

    Google Scholar 

  61. Katz ML, Drea CM, Eldred GE, Hess HH, Robison WG. Influence of early photoreceptor degeneration on lipofuscin in the retinal-pigment epithelium. Exp Eye Res 1986;43:561–573.

    PubMed  CAS  Google Scholar 

  62. D'Cruz PM, Yasumura D, Weir J, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 2000;9:645–651.

    PubMed  Google Scholar 

  63. Liu JH, Itagaki Y, Ben-Shabat S, Nakanishi K, Sparrow JR. The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem 2000;275:29354–29360.

    PubMed  CAS  Google Scholar 

  64. Katz ML, Eldred GE. Retinal light damage reduces auto-fluorescent pigment deposition in the retinal-pigment epithelium. Invest Ophthalmol Vis Sci 1989;30:37–43.

    PubMed  CAS  Google Scholar 

  65. Boulton M, McKechnie NM, Breda J, Bayly M, Marshall J. The formation of auto-fluorescent granules in cultured human RPE. Invest Ophthalmol Vis Sci 1989;30:82–89.

    PubMed  CAS  Google Scholar 

  66. Rakoczy P, Kennedy C, Thompsonwallis D, Mann K, Constable I. Changes in retinal-pigment epithelial-cell autofluorescence and protein expression associated with phagocytosis of rod outer segments in vitro. Biol Cell 1992;76:49–54.

    PubMed  CAS  Google Scholar 

  67. Wihlmark U, Wrigstad A, Roberg K, Brunk UT, Nilsson SEG. Lipofuscin formation in cultured retinal pigment epithelial cells exposed to photoreceptor outer segment material under different oxygen concentrations. APMIS 1996;104:265–271.

    PubMed  CAS  Google Scholar 

  68. Wassell J, Ellis S, Burke J, Boulton M. Fluorescence properties of autofluorescent granules generated by cultured human RPE cells. Invest Ophthalmol Vis Sci 1998;39:1487–1492.

    PubMed  CAS  Google Scholar 

  69. Burke JM, Skumatz CMB. Autofluorescent inclusions in long-term postconfluent cultures of retinal pigment epithelium. Invest Ophthalmol Vis Sci 1998;39:1478–1486.

    PubMed  CAS  Google Scholar 

  70. Katz ML, Shanker MJ. Development of lipofuscin-like fluorescence in the retinal-pigment epithelium in response to protease inhibitor treatment. Mech Ageing Dev 1989;49:23–40.

    PubMed  CAS  Google Scholar 

  71. Katz ML. Incomplete proteolysis may contribute to lipofuscin accumulation in the retinal pigment epithelium. In: Porta EA, ed. Lipofuscin and ceroid pigments. New York: Plenum Press; 1990:109–118.

    Google Scholar 

  72. Ivy GO, Kanai S, Ohta M, et al. Lipofuscin-like substances accumulate rapidly in brain, retina and internal organs with cysteine protease inhibition. In: Porta EA, ed. Lipofuscin and ceroid pigments. New York: Plenum Press; 1990:31–47.

    Google Scholar 

  73. Rakoczy PE, Zhang D, Robertson T, et al. Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am J Pathol 2002;161: 1515–1524.

    PubMed  CAS  Google Scholar 

  74. Hayasaka S. Aging changes in lipofuscin, lysosomes and melanin in the macular area of human retina and choroid. Jpn J Ophthalmol 1989;33:36–42.

    PubMed  CAS  Google Scholar 

  75. Boulton M, Moriarty P, Jarvisevans J, Marcyniuk B. Regional variation and age-related-changes of lysosomal-enzymes in the human retinal-pigment epithelium. Br J Ophthalmol 1994;78:125–129.

    PubMed  CAS  Google Scholar 

  76. Hoppe G, Marmorstein AD, Pennock EA, Hoff HF. Oxidized low density lipoprotein-induced inhibition of processing of photoreceptor outer segments by RPE. Invest Ophthalmol Vis Sci 2001;42:2714–2720.

    PubMed  CAS  Google Scholar 

  77. Hoppe G, O'Neil J, Hoff HF, Sears J. Accumulation of oxidized lipid-protein complexes alters phagosome maturation in retinal pigment epithelium. Cell Mol Life Sci 2004;61: 1664–1674.

    PubMed  CAS  Google Scholar 

  78. Crabb JW, O'Neil J, Miyagi M, West K, Hoff HF. Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues. Protein Sci 2002;11:831–840.

    PubMed  CAS  Google Scholar 

  79. Bergmann M, Schutt F, Holz FG, Kopitz J. Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J 2004;18:562–564.

    PubMed  CAS  Google Scholar 

  80. Bermann M, Schutt F, Holz FG, Kopitz J. Does A2E, a retinoid component of lipofuscin and inhibitor of lysosomal degradative functions, directly affect the activity of lysosomal hydro-lases? Exp Eye Res 2001;72:191–195.

    PubMed  CAS  Google Scholar 

  81. Holz FG, Schutt F, Kopitz J, et al. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 1999;40:737–743.

    PubMed  CAS  Google Scholar 

  82. Finnemann SC, Leung LW, Rodriguez-Boulan E. The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc Natl Acad Sci U S A 2002;99:3842–3847.

    PubMed  CAS  Google Scholar 

  83. Katz ML, Robison WG. Nutritional influences on autooxidation, lipofuscin accumulation, and aging. In: Johnson JEJ, Walford R, Harman D, Miquel J, eds. Free radicals, aging, and degenerative diseases. New York: Liss; 1986:113–129.

    Google Scholar 

  84. Boulton M, Rozanowska M, Rozanowski B. Retinal photodamage. J Photochem Photobiol B-Biol 2001;64:144–161.

    CAS  Google Scholar 

  85. Katz ML, Christianson JS, Gao CL, Handelman GJ. Iron-induced fluorescence in the retina— dependence on vitamin-A. Invest Ophthalmol Vis Sci 1994;35:3613–3624.

    PubMed  CAS  Google Scholar 

  86. Hahn P, Qian Y, Dentchev T, et al. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci U S A 2004;101:13850–13855.

    PubMed  CAS  Google Scholar 

  87. Sundelin SP, Nilsson SEG. Lipofuscin-formation in retinal pigment epithelial cells is reduced by antioxidants. Free Radic Biol Med 2001;31:217–225.

    PubMed  CAS  Google Scholar 

  88. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. Oxford, UK: Oxford University Press, 2000.

    Google Scholar 

  89. Sugano E, Tomita H, Ishiguro SI, Isago H, Tamai M. Nitric oxide-induced accumulation of lipofuscin-like materials is caused by inhibition of cathepsin S. Curr Eye Res 2006;31:607–616.

    PubMed  CAS  Google Scholar 

  90. Schadel SA, Heck M, Maretzki D, et al. Ligand channeling within a G-protein-coupled receptor — The entry and exit of retinals in native opsin. J Biol Chem 2003;278:24896–24903.

    PubMed  Google Scholar 

  91. Beharry S, Zhong M, Molday RS. N-Retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem 2004;279:53972–53979.

    PubMed  CAS  Google Scholar 

  92. Sun H, Nathans J. ABCR, the ATP-binding cassette transporter responsible for Stargardt macular dystrophy, is an efficient target of all-trans-retinal-mediated photooxidative damage in vitro—implications for retinal disease. J Biol Chem 2001;276:11766–11774.

    PubMed  CAS  Google Scholar 

  93. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice. Cell 1999;98:13–23.

    PubMed  CAS  Google Scholar 

  94. Radu RA, Mata NL, Bagla A, Travis GH. Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt's macular degeneration. Proc Natl Acad Sci U S A 2004;101:5928–5933.

    PubMed  CAS  Google Scholar 

  95. Kim SR, Nakanishi K, Itagaki Y, Sparrow JR. Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp Eye Res 2006;82:828–839.

    PubMed  CAS  Google Scholar 

  96. Allikmets R, Singh N, Sun H, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nature Genet 1997;15: 236–246.

    PubMed  CAS  Google Scholar 

  97. Cremers FPM, van De Pol DJR, van Driel M, et al. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR. Hum Mol Genet 1998;7:355–362.

    PubMed  CAS  Google Scholar 

  98. Martinez-Mir A, Paloma E, Allikmets R, et al. Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 1998;18:11–12.

    PubMed  CAS  Google Scholar 

  99. Zhang QJ, Zulfiqar F, Xiao XS, et al. Severe autosomal recessive retinitis pigmentosa maps to chromosome 1p13.3-p21.2 between D1S2896 and D1S457 but outside ABCA4. Hum Genet 2005;118:356–365.

    PubMed  CAS  Google Scholar 

  100. Allikmets R. Further evidence for an association of ABCR alleles with age-related macular degeneration. Am J Hum Genet 2000;67:487–491.

    PubMed  CAS  Google Scholar 

  101. Maeda A, Maeda T, Imanishi Y, et al. Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo. J Biol Chem 2005;280:18822–18832.

    PubMed  CAS  Google Scholar 

  102. Maeda A, Maeda T, Imanishi Y, et al. Retinol dehydrogenase (RDH12) protects photo-receptors from light-induced degeneration in mice. J Biol Chem 2006;281:37697–37704.

    PubMed  CAS  Google Scholar 

  103. Travis GH, Golczak M, Moise AR, Palczewski K. Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmocol Toxicol 2007;47: 8.1–8.44.

    Google Scholar 

  104. Imanishi Y, Batten ML, Piston DW, Baehr W, Palczewski K. Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. J Cell Biol 2004;164:373–383.

    PubMed  CAS  Google Scholar 

  105. Imanishi Y, Gerke V, Palczewski K. Retinosomes: new insights into intracellular managing of hydrophobic substances in lipid bodies. J Cell Biol 2004;166:447–453.

    PubMed  CAS  Google Scholar 

  106. Lamb TD, Pugh EN. Dark adaptation and the retinoid cycle of vision. Prog Retin Eye Res 2004;23:307–380.

    PubMed  CAS  Google Scholar 

  107. Bridges CDB, Alvarez RA, Fong SL. Vitamin A in human eyes—amount, distribution, and composition. Invest Ophthalmol Vis Sci 1982;22:706–714.

    PubMed  CAS  Google Scholar 

  108. Eldred GE, Katz ML. The auto-fluorescent products of lipid-peroxidation may not be lipo-fuscin-like. Free Radic Biol Med 1989;7:157–163.

    PubMed  CAS  Google Scholar 

  109. Katz ML, Gao CL, Rice LM. Long-term variations in cyclic light intensity and dietary vitamin a intake modulate lipofuscin content of the retinal pigment epithelium. J Neurosci Res 1999;57:106–116.

    PubMed  CAS  Google Scholar 

  110. Radu RA, Han Y, Bui T V, et al. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest Ophthalmol Vis Sci 2005;46:4393–4401.

    PubMed  Google Scholar 

  111. Jin MH, Li SH, Moghrabi WN, Sun H, Travis GH. Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 2005;122:449–459.

    PubMed  CAS  Google Scholar 

  112. Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A 2005;102:12413–12418.

    PubMed  CAS  Google Scholar 

  113. Redmond TM, Poliakov E, Yu S, Tsai JY, Lu ZJ, Gentleman S. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci U S A 2005;102:13658–13663.

    PubMed  CAS  Google Scholar 

  114. Wenzel A, Oberhauser V, Pugh EN, et al. The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light. J Biol Chem 2005;280: 29874–29884.

    PubMed  CAS  Google Scholar 

  115. Maeda T, Van Hooser JP, Driessen C, Filipek S, Janssen JJM, Palczewski K. Evaluation of the role of the retinal G protein-coupled receptor (RGR) in the vertebrate retina in vivo. J Neurochem 2003;85:944–956.

    PubMed  CAS  Google Scholar 

  116. Chen P, Hao WS, Rife L, et al. A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nature Genet 2001;28:256–260.

    PubMed  CAS  Google Scholar 

  117. Winston A, Rando RR. Regulation of isomerohydrolase activity in the visual cycle. Biochemistry 1998;37:2044–2050.

    PubMed  CAS  Google Scholar 

  118. McBee JK, Van Hooser JP, Jang GF, Palczewski K. Isomerization of 11-cis-retinoids to all-trans-retinoids in vitro and in vivo. J Biol Chem 2001;276:48483–48493.

    PubMed  CAS  Google Scholar 

  119. Bunt-Milam AH, Saari JC. Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J Cell Biol 1983;97:703–712.

    PubMed  CAS  Google Scholar 

  120. Saari JC, Bredberg DL. Photochemistry and stereoselectivity of cellular retinaldehyde-binding protein from bovine retina. J Biol Chem 1987;262:7618–7622.

    PubMed  CAS  Google Scholar 

  121. Kim TS, Maeda A, Maeda T, et al. Delayed dark adaptation in 11-cis-retinol dehydroge-nase-deficient mice—a role of RDH11 in visual processes in vivo. J Biol Chem 2005;280: 8694–8704.

    PubMed  CAS  Google Scholar 

  122. Saari JC, Bredberg DL, Farrell DF. Retinol esterification in bovine retinal-pigment epithelium—reversibility of lecithin-retinol acyltransferase. Biochem J 1993;291:697–700.

    PubMed  CAS  Google Scholar 

  123. Katz ML, Redmond TM. Effect of Rpe65 knockout on accumulation of lipofuscin fluorophores in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 2001;42: 3023–3030.

    PubMed  CAS  Google Scholar 

  124. Katz ML, Wendt KD, Sanders DN. RPE65 gene mutation prevents development of autofluorescence in retinal pigment epithelial phagosomes. Mech Ageing Dev 2005;126:513–521.

    PubMed  CAS  Google Scholar 

  125. Kim SR, Fishkin N, Kong J, Nakanishi K, Allikmets R, Sparrow JR. Rpe65 Leu450Met variant is associated with reduced levels of the retinal pigment epithelium lipofuscin fluoro-phores A2E and iso-A2E. Proc Natl Acad Sci U S A 2004;101:11668–11672.

    PubMed  CAS  Google Scholar 

  126. Radu RA, Mata NL, Nusinowitz S, Liu XR, Sieving PA, Travis GH. Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt's macular degeneration. Proc Natl Acad Sci U S A 2003;100:4742–4747.

    PubMed  CAS  Google Scholar 

  127. Maiti P, Kong J, Kim SR, Sparrow JR, Allikmets R, Rando RR. Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochemistry 2006;45: 852–860.

    PubMed  CAS  Google Scholar 

  128. Darrow RA, Darrow RM, Organisciak DT. Biochemical characterization of cell specific enzymes in light-exposed rat retinas: oxidative loss of all-trans retinol dehydrogenase activity. Curr Eye Res 1997;16:144–151.

    PubMed  CAS  Google Scholar 

  129. Schremser JL, Williams TP. Rod outer segment (ROS) renewal as a mechanism for adaptation to a new intensity environment. 1. Rhodopsin levels and ROS length. Exp Eye Res 1995;61:17–23.

    PubMed  CAS  Google Scholar 

  130. Reme CE, Wolfrum U, Imsand C, Hafezi F, Williams TP. Photoreceptor autophagy: effects of light history on number and opsin content of degradative vacuoles. Invest Ophthalmol Vis Sci 1999;40:2398–2404.

    PubMed  CAS  Google Scholar 

  131. Wiegand RD, Joel CD, Rapp LM, Nielsen JC, Maude MB, Anderson RE. Polyunsaturated fatty acids and vitamin E in rat rod outer segments during light damage. Invest Ophthalmol Vis Sci 1986;27:727–733.

    PubMed  CAS  Google Scholar 

  132. Penn JS, Anderson RE. Effects of light history on the rat retina. Prog Retin Res 1991;11: 75–98.

    Google Scholar 

  133. Weale RA. Do years or quanta age the retina? Photochem Photobiol 1989;50:429–438.

    PubMed  CAS  Google Scholar 

  134. Fite K V, Bengston L, Donaghey B. Experimental light damage increases lipofuscin in the retinal pigment epithelium of Japanese quail (Coturnix coturnix Japonica). Exp Eye Res 1993;57:449–460.

    PubMed  CAS  Google Scholar 

  135. Brunk UT, Wihlmark U, Wrigstad A, Roberg K, Nilsson SE. Accumulation of lipofuscin within retinal pigment epithelial cells results in enhanced sensitivity to photooxidation. Gerontology 1995;41:201–211.

    PubMed  CAS  Google Scholar 

  136. Boettner EA, Wolter JR. Transmission of the ocular media. Invest Ophthalmol 1962;1: 776–783.

    Google Scholar 

  137. Karan G, Lillo C, Yang Z, et al. Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc Natl Acad Sci U S A 2005;102:4164–4169.

    PubMed  CAS  Google Scholar 

  138. Marmorstein AD, Stanton JB, Yocom J, et al. A model of best vitelliform macular dystrophy in rats. Invest Ophthalmol Vis Sci 2004;45:3733–3739.

    PubMed  Google Scholar 

  139. Nandrot EE, Kim YH, Brodie SE, Huang XZ, Sheppard D, Finnemann SC. Loss of synchronized retinal phagocytosis and age-related blindness in mice lacking alpha v beta 5 integrin. J Exp Med 2004;200:1539–1545.

    PubMed  CAS  Google Scholar 

  140. Miceli M V, Newsome DA, Tate DJ, Sarphie TG. Pathologic changes in the retinal pigment epithelium and Bruch's membrane of fat-fed atherogenic mice. Curr Eye Res 2000;20:8–16.

    PubMed  CAS  Google Scholar 

  141. Tanaka N, Ikawa M, Mata NL, Verma IM. Choroidal neovascularization in transgenic mice expressing prokineticin 1: an animal model for age-related macular degeneration. Mol Ther 2006;13:609–616.

    PubMed  CAS  Google Scholar 

  142. Kuziel WA, Morgan SJ, Dawson TC, et al. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci U S A 1997;94:12053–12058.

    PubMed  CAS  Google Scholar 

  143. Lu B, Rutledge BJ, Gu L, et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 1998;187: 601–608.

    PubMed  CAS  Google Scholar 

  144. Ambati J, Anand A, Fernandez S, et al. An animal model of age-related macular degeneration in senescent Ccl-2-or Ccr-2-deficient mice. Nat Med 2003;9:1390–1397.

    PubMed  CAS  Google Scholar 

  145. Majji AB, Cao JT, Chang KY, et al. Age-related retinal pigment epithelium and Bruch's membrane degeneration in senescence-accelerated mouse. Invest Ophthalmol Vis Sci 2000;41:3936–3942.

    PubMed  CAS  Google Scholar 

  146. Yu K, Cui Y Y, Hartzell HC. The bestrophin mutation A243V, linked to adult-onset vitel-liform macular dystrophy, impairs its chloride channel function. Invest Ophthalmol Vis Sci 2006;47:4956–4961.

    PubMed  Google Scholar 

  147. Schatz P, Klar J, Andreasson S, Ponjavic V, Dahl N. Variant phenotype of best vitelliform macular dystrophy associated with compound heterozygous mutations in VMD2. Ophthalmic Genet 2006;27:51–56.

    PubMed  CAS  Google Scholar 

  148. Marmorstein LY, Wu J, McLaughlin P, et al. The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (Best-1). J Gen Physiol 2006;127:577–589.

    PubMed  CAS  Google Scholar 

  149. Strauss O, Rosenthal R. Function of bestrophin. Ophthalmologe 2005;102:122–126.

    PubMed  CAS  Google Scholar 

  150. Rosenthal R, Bakall B, Kinnick T, et al. Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J 2005;19:178–180.

    Google Scholar 

  151. Hartzell C, Putzier I, Arreola J. Calcium-activated chloride channels. Annu Rev Physiol 2005;67:719–758.

    PubMed  CAS  Google Scholar 

  152. Ghosh S, Kewalramani G, Yuen G, et al. Induction of mitochondrial nitrative damage and cardiac dysfunction by chronic provision of dietary omega-6 polyunsaturated fatty acids. Free Radic Biol Med 2006;41:1413–1424.

    PubMed  CAS  Google Scholar 

  153. Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 2006;29:263–271.

    PubMed  CAS  Google Scholar 

  154. Massaro M, Habib A, Lubrano L, et al. The omega-3 fatty acid docosahexaenoate attenuates endothelial cyclooxygenase-2 induction through both NADP(H) oxidase and PKC epsilon inhibition. Proc Natl Acad Sci U S A 2006;103:15184–15189.

    PubMed  CAS  Google Scholar 

  155. Gehrs KM, Anderson DH, Johnson LV, Hageman GS. Age-related macular degeneration - emerging pathogenetic and therapeutic concepts. Ann Med 2006;38:450–471.

    PubMed  Google Scholar 

  156. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and anti-oxidants in normal physiological functions and human disease. Int J Biochem Cell Biol

    PubMed  CAS  Google Scholar 

  157. Bui TV, Han Y, Radu RA, Travis GH, Mata NL. Characterization of native retinal fluor-ophores involved in biosynthesis of A2E and lipofuscin-associated retinopathies. J Biol Chem 2006;281:18112–18119.

    PubMed  CAS  Google Scholar 

  158. Mata NL, Tzekov RT, Liu XR, Weng J, Birch DG, Travis GH. Delayed. dark-adaptation and lipofuscin accumulation in abcr+/− mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 2001;42:1685–1690.

    PubMed  CAS  Google Scholar 

  159. Polyakov NE, Leshina T V, Konovalova TA, Kispert LD. Carotenoids as scavengers of free radicals in a Fenton reaction: antioxidants or pro-oxidants? Free Radic Biol Med 2001;31:398–404.

    PubMed  CAS  Google Scholar 

  160. Rozanowska M, Boulton M, Edge R, et al. Protective effects of phosphatidylethanolamine against retinal reactivity. Free Radic Biol Med 2006;41:S168.

    Google Scholar 

  161. Ishii T, Kumazawa S, Sakurai T, Nakayama T, Uchida K. Mass spectroscopic characterization of protein modification by malondialdehyde. Chem Res Toxicol 2006;19:122–129.

    PubMed  CAS  Google Scholar 

  162. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 2003;42:318–343.

    PubMed  CAS  Google Scholar 

  163. Gu XR, Sun MJ, Gugiu B, Hazen S, Crabb JW, Salomon RG. Oxidatively truncated docosa-hexaenoate phospholipids: total synthesis, generation, and peptide adduction chemistry. J Org Chem 2003;68:3749–3761.

    PubMed  CAS  Google Scholar 

  164. Bernoud-Hubac N, Roberts LJ. Identification of oxidized derivatives of neuroketals. Biochemistry 2002;41:11466–11471.

    PubMed  CAS  Google Scholar 

  165. Bernoud-Hubac N, Davies SS, Boutaud O, Montine TJ, Roberts LJ. Formation of highly reactive gamma-ketoaldehydes (neuroketals) as products of the neuroprostane pathway. J Biol Chem 2001;276:30964–30970.

    PubMed  CAS  Google Scholar 

  166. Tate DJ, Miceli MV, Newsome DA. Phagocytosis and H2O2 induce catalase and metal-lothione in gene-expression in human retinal-pigment epithelial-cells. Invest Ophthalmol Vis Sci 1995;36:1271–1279.

    PubMed  Google Scholar 

  167. Miceli MV, Liles MR, Newsome DA. Evaluation of oxidative processes in human pigment epithelial-cells associated with retinal outer segment phagocytosis. Exp Cell Res 1994;214:242–249.

    PubMed  CAS  Google Scholar 

  168. Kindzelskii AL, Elner VM, Elner SG, Yang DL, Hughes BA, Petty HR. Human, but not bovine, photoreceptor outer segments prime human retinal pigment epithelial cells for metabolic activation and massive oxidant release in response to lipopolysaccharide and interferon-gamma. Exp Eye Res 2004;79:431–435.

    PubMed  CAS  Google Scholar 

  169. Katz ML, Rice LM, Gao CL. Reversible accumulation of lipofuscin-like inclusions in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1999;40:175–181.

    PubMed  CAS  Google Scholar 

  170. Schmitz-Valckenberg S, Bindewald-Wittich A, Dolar-Szczasny J, et al. Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD. Invest Ophthalmol Vis Sci 2006;47:2648–2654.

    PubMed  Google Scholar 

  171. Hwang JC, Chan JWK, Chang S, Smith RT. Predictive value of fundus autofluorescence for development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 2006;47:2655–2661.

    PubMed  Google Scholar 

  172. Lamb LE, Simon JD. A2E: A component of ocular lipofuscin. Photochem Photobiol 2004;79:127–136.

    PubMed  CAS  Google Scholar 

  173. Bakker L, Pawlak A, Rozanowski B, Boulton M, Rozanowska M. Phototoxicity of peroxidized docosahexaenoate. Free Radic Biol Med 2006;41:S156.

    Google Scholar 

  174. Rozanowska M, Wessels J, Boulton M, et al. Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. Free Radic Biol Med 1998;24:1107–1112.

    PubMed  CAS  Google Scholar 

  175. Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, Sarna T. Blue light-induced reactivity of retinal age pigment—in-vitro generation of oxygen-reactive species. J Biol Chem 1995;270:18825–18830.

    PubMed  CAS  Google Scholar 

  176. Wassell J, Davies S, Bardsley W, Boulton M. The photoreactivity of the retinal age pigment lipofuscin. J Biol Chem 1999;274:23828–23832.

    PubMed  CAS  Google Scholar 

  177. Shamsi FA, Boulton M. Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest Ophthalmol Vis Sci 2001;42:3041–3046.

    PubMed  CAS  Google Scholar 

  178. Sparrow JR, Nakanishi K, Parish CA. The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 2000;41:1981–1989.

    PubMed  CAS  Google Scholar 

  179. Roberts JE, Kukielczak BM, Hu DN, et al. The role of A2E in prevention or enhancement of light damage in human retinal pigment epithelial cells. Photochem Photobiol 2002;75:184–190.

    PubMed  CAS  Google Scholar 

  180. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal-pathobiology. Exp Eye Res 2005;80:595–606.

    PubMed  CAS  Google Scholar 

  181. Wihlmark U, Wrigstad A, Roberg K, Nilsson SEG, Brunk UT. Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced sensitivity to blue light irradiation. Free Radic Biol Med 1997;22:1229–1234.

    PubMed  CAS  Google Scholar 

  182. Sundelin S, Wihlmark U, Nilsson SEG, Brunk UT. Lipofuscin accumulation in cultured retinal pigment epithelial cells reduces their phagocytic capacity. Curr Eye Res 1998;17:851–857.

    PubMed  CAS  Google Scholar 

  183. Kannan R, Zhang N, Sreekumar PG, et al. Stimulation of apical and basolateral vascular endothelial growth factor-A and vascular endothelial growth factor-C secretion by oxida-tive stress in polarized retinal pigment epithelial cells. Mol Vis 2006;12:1649–1659.

    PubMed  CAS  Google Scholar 

  184. Sreekumar PG, Kannan R, de Silva AT, Burton R, Ryan SJ, Hinton DR. Thiol regulation of vascular endothelial growth factor-A and its receptors in human retinal pigment epithelial cells. Biochem Biophys Res Commun 2006;346:1200–1206.

    PubMed  CAS  Google Scholar 

  185. Higgins GT, Wang JH, Dockery P, Cleary PE, Redmond HP. Induction of angiogenic cytokine expression in cultured RPE by ingestion of oxidized photoreceptor outer segments. Invest Ophthalmol Vis Sci 2003;44:1775–1782.

    PubMed  Google Scholar 

  186. Lukiw WJ, Mukherjee PK, Cui JG, Bazan NG. A2E selectively induces COX-2 in ARPE-19 and human neural cells. Curr Eye Res 2006;31:259–263.

    PubMed  CAS  Google Scholar 

  187. Zhou JL, Jang YP, Kim SR, Sparrow JR. Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci U S A 2006;103:16182–16187.

    PubMed  CAS  Google Scholar 

  188. Ayalasomayajula SP, Kompella UB. Induction of vascular endothelial growth factor by 4-hydroxynonenal and its prevention by glutathione precursors in retinal pigment epithelial cells. Eur J Pharmacol 2002;449:213–220.

    PubMed  CAS  Google Scholar 

  189. Yanagi Y, Inoue Y, Iriyama A, Jang WD. Effects of yellow intraocular lenses on light-induced upregulation of vascular endothelial growth factor. J Cataract Refract Surg 2006;32: 1540–1544.

    PubMed  Google Scholar 

  190. Zhou JL, Cai BL, Jang YP, Pachydaki S, Schmidt AM, Sparrow JR. Mechanisms for the induction of HNE- MDA- and AGE-adducts, RAGE and VEGF in retinal pigment epithelial cells. Exp Eye Res 2005;80:567–580.

    PubMed  CAS  Google Scholar 

  191. Schlingemann RO. Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2004;242:91–101.

    PubMed  CAS  Google Scholar 

  192. Witmer AN, Vrensen G, Van Noorden CJF, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 2003;22:1–29.

    PubMed  CAS  Google Scholar 

  193. Ebrahem Q, Renganathan K, Sears J, et al. Carboxyethylpyrrole oxidative protein modifications stimulate neovascularization: Implications for age-related macular degeneration. Proc Natl Acad Sci U S A 2006;103:13480–13484.

    PubMed  CAS  Google Scholar 

  194. Donoso LA, Kim D, Frost A, Callahan A, Hageman G. The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2006;51:137–152.

    PubMed  Google Scholar 

  195. Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol 2006;66:606–630.

    PubMed  CAS  Google Scholar 

  196. Golczak M, Kuksa V, Maeda T, Moise AR, Palczewski K. Positively charged retinoids are potent and selective inhibitors of the trans-cis isomerization in the retinoid (visual) cycle. Proc Natl Acad Sci U S A 2005;102:8162–8167.

    PubMed  CAS  Google Scholar 

  197. Golczak M, Imanishi Y, Kuksa V, Maeda T, Kubota R, Palczewski K. Lecithin: retinol acyl-transferase is responsible for amidation of retinylamine, a potent inhibitor of the retinoid cycle. J Biol Chem 2005;280:42263–42273.

    PubMed  CAS  Google Scholar 

  198. Maeda A, Maeda T, Golczak M, et al. Effects of potent inhibitors of the retinoid cycle on visual function and photoreceptor protection from light damage in mice. Mol Pharmacol 2006;70:1220–1229.

    PubMed  CAS  Google Scholar 

  199. Mainster MA. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. Br J Ophthalmol 2006;90:784–792.

    PubMed  CAS  Google Scholar 

  200. Peirson S, Foster RG. Melanopsin: another way of signaling light. Neuron 2006;49: 331–339.

    PubMed  CAS  Google Scholar 

  201. Michels M, Sternberg P. Operating microscope-induced retinal phototoxicity—pathophysi-ology, clinical manifestations and prevention. Surv Ophthalmol 1990;34:237–252.

    PubMed  CAS  Google Scholar 

  202. Mainster MA, Ham WT, Delori FC. Potential retinal hazards—instrument and environmental light sources. Ophthalmology 1983;90:927–932.

    PubMed  CAS  Google Scholar 

  203. Organisciak DT, Darrow RM, Barsalou L, et al. Light history and age-related changes in retinal light damage. Invest Ophthalmol Vis Sci 1998;39:1107–1116.

    PubMed  CAS  Google Scholar 

  204. Maeda A, Crabb JW, Palczewski K. Microsomal glutathione S-transferase 1 in the retinal pigment epithelium: protection against oxidative stress and a potential role in aging. Biochemistry 2005;44:480–489.

    PubMed  CAS  Google Scholar 

  205. Gosbell AD, Stefanovic N, Scurr LL, et al. Retinal light damage: Structural and functional effects of the antioxidant glutathione peroxidase-1. Invest Ophthalmol Vis Sci 2006;47:2613–2622.

    PubMed  Google Scholar 

  206. Hanneken A, Lin FF, Johnson J, Maher P. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci 2006;47:3164–3177.

    PubMed  Google Scholar 

  207. Voloboueva LA, Liu JK, Suh JH, Ames BN, Miller SS. (R)-alpha-Lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest Ophthalmol Vis Sci 2005;46: 4302–4310.

    PubMed  Google Scholar 

  208. Gao XQ, Talalay P. Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proc Natl Acad Sci U S A 2004;101: 10446–10451.

    PubMed  CAS  Google Scholar 

  209. Wrona M, Rozanowska M, Sarna T. Zeaxanthin in combination with ascorbic acid or alpha-tocopherol protects ARPE-19 cells against photosensitized peroxidation of lipids. Free Radic Biol Med 2004;36:1094–1101.

    PubMed  CAS  Google Scholar 

  210. Mattson MP, Cheng AW. Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 2006;29:632–639.

    PubMed  CAS  Google Scholar 

  211. Surh YJ, Kundu JK, Na HK, Lee JS. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 2005;135:2993S–3001S.

    PubMed  CAS  Google Scholar 

  212. Tanito M, Masutani H, Kim YC, Nishikawa M, Ohira A, Yodoi J. Sulforaphane induces thioredoxin through the antioxidant-responsive element and attenuates retinal light damage in mice. Invest Ophthalmol Vis Sci 2005;46:979–987.

    PubMed  Google Scholar 

  213. Zhou JL, Gao XQ, Cai BL, Sparrow JR. Indirect antioxidant protection against photooxida-tive processes initiated in retinal pigment epithelial cells by a lipofuscin pigment. Rejuv Res 2006;9:256–263.

    CAS  Google Scholar 

  214. Bazan NG. Survival signaling in retinal pigment epithelial cells in response to oxidative stress: significance in retinal degenerations. Adv Exp Med Biol 2006;531–540.

    Google Scholar 

  215. Bazan NG. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 2005;15:159–166.

    PubMed  CAS  Google Scholar 

  216. SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 2005;24:87–138.

    PubMed  CAS  Google Scholar 

  217. Pawlak A, Rozanowska M, Zareba M, Lamb LE, Simon JD, Sarna T. Action spectra for the photoconsumption of oxygen by human ocular lipofuscin and lipofuscin extracts. Arch Biochem Biophys 2002;403:59–62.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

RóŻanowski, M., RóŻanowski, B. (2008). Visual Transduction and Age-Related Changes in Lipofuscin. In: Tombran-Tink, J., Barnstable, C.J. (eds) Visual Transduction and Non-Visual Light Perception. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-374-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-374-5_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-957-4

  • Online ISBN: 978-1-59745-374-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics