Skip to main content

The Effects of Aging on HIV Disease

  • Chapter
  • First Online:
HIV and the Brain

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Persons 50 years or older have represented approximately12% of the newly diagnosed AIDS cases in the US since 2005 (1) . In an analysis of such cases between 1991 and 1995, older persons were more likely to present with encephalopathy and wasting syndrome, and were more likely to die within one month of presentation, (2) . Although the largest HIV transmission category in this analysis were men who have sex with men, several studies also have demonstrated lower rates of HIV seroconversion and lower rates of unprotected anal intercourse among older men, however (35).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centers for Disease Control and Prevention. HIV/AIDS Surveillance Report, 2005, Vol 17. Rev ed. Atlanta:available at: http//cdc.gov/hiv/topics/surveillance/resources/reports/. Accessed 4/26/08. 2003.

  2. AIDS among persons aged > or = 50 years–United States, 1991–1996. MMWR Morb Mortal Wkly Rep 1998;47(2):21–7.

    Google Scholar 

  3. Penkower L, Dew MA, Kingsley L, et al. Behavioral, health and psychosocial factors and risk for HIV infection among sexually active homosexual men: the Multicenter AIDS Cohort Study. Am J Public Health 1991;81(2):194–6.

    PubMed  CAS  Google Scholar 

  4. Kelly JA, Murphy DA, Roffman RA, et al. Acquired immunodeficiency syndrome/human immunodeficiency virus risk behavior among gay men in small cities. Findings of a 16-city national sample. Arch Intern Med 1992;152(11):2293–7.

    PubMed  CAS  Google Scholar 

  5. Buchbinder SP, Douglas JM, Jr., McKirnan DJ, Judson FN, Katz MH, MacQueen KM. Feasibility of human immunodeficiency virus vaccine trials in homosexual men in the United States: risk behavior, seroincidence, and willingness to participate. J Infect Dis 1996;174(5):954–61.

    PubMed  CAS  Google Scholar 

  6. Lindau ST, Schumm LP, Laumann EO, Levinson W, O’Muircheartaigh CA, Waite LJ. A study of sexuality and health among older adults in the United States. N Engl J Med 2007;357(8):762–74.

    PubMed  CAS  Google Scholar 

  7. Rothenberg R, Woelfel M, Stoneburner R, Milberg J, Parker R, Truman B. Survival with the acquired immunodeficiency syndrome. Experience with 5833 cases in New York City. N Engl J Med 1987;317(21):1297–302.

    PubMed  CAS  Google Scholar 

  8. Goedert JJ, Kessler CM, Aledort LM, et al. A prospective study of human immunodeficiency virus type 1 infection and the development of AIDS in subjects with hemophilia. N Engl J Med 1989;321(17):1141–8.

    PubMed  CAS  Google Scholar 

  9. Time from HIV-1 seroconversion to AIDS and death before widespread use of highly-active antiretroviral therapy: a collaborative re-analysis. Collaborative Group on AIDS Incubation and HIV Survival including the CASCADE EU Concerted Action. Concerted Action on SeroConversion to AIDS and Death in Europe. Lancet 2000;355(9210):1131–7.

    Google Scholar 

  10. Egger M, May M, Chene G, et al. Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: a collaborative analysis of prospective studies. Lancet 2002;360(9327):119–29.

    PubMed  Google Scholar 

  11. Grabar S, Kousignian I, Sobel A, et al. Immunologic and clinical responses to highly active antiretroviral therapy over 50 years of age. Results from the French Hospital Database on HIV. AIDS 2004;18(15):2029–38.

    PubMed  Google Scholar 

  12. Stringer JS, Zulu I, Levy J, et al. Rapid scale-up of antiretroviral therapy at primary care sites in Zambia: feasibility and early outcomes. JAMA 2006;296(7):782–93.

    PubMed  CAS  Google Scholar 

  13. Lohse N, Hansen AB, Pedersen G, et al. Survival of persons with and without HIV infection in Denmark, 1995–2005. Ann Intern Med 2007;146(2):87–95.

    PubMed  Google Scholar 

  14. Paterson DL, Swindells S, Mohr J, et al. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Ann Intern Med 2000;133(1):21–30.

    PubMed  CAS  Google Scholar 

  15. Carrieri P, Cailleton V, Le Moing V, et al. The dynamic of adherence to highly active antiretroviral therapy: results from the French National APROCO cohort. J Acquir Immune Defic Syndr 2001;28(3):232–9.

    PubMed  CAS  Google Scholar 

  16. Stone VE, Hogan JW, Schuman P, et al. Antiretroviral regimen complexity, self-reported adherence, and HIV patients’ understanding of their regimens: survey of women in the her study. J Acquir Immune Defic Syndr 2001;28(2):124–31.

    PubMed  CAS  Google Scholar 

  17. Hinkin CH, Hardy DJ, Mason KI, et al. Medication adherence in HIV-infected adults: effect of patient age, cognitive status, and substance abuse. AIDS 2004;18 Suppl 1:S19–25.

    PubMed  Google Scholar 

  18. Carrieri MP, Leport C, Protopopescu C, et al. Factors associated with nonadherence to highly active antiretroviral therapy: a 5-year follow-up analysis with correction for the bias induced by missing data in the treatment maintenance phase. J Acquir Immune Defic Syndr 2006;41(4):477–85.

    PubMed  Google Scholar 

  19. Mocroft A, Gill MJ, Davidson W, Phillips AN. Predictors of a viral response and subsequent virological treatment failure in patients with HIV starting a protease inhibitor. AIDS 1998;12(16):2161–7.

    PubMed  CAS  Google Scholar 

  20. Le Moing V, Chene G, Carrieri MP, et al. Predictors of virological rebound in HIV-1-infected patients initiating a protease inhibitor-containing regimen. AIDS 2002;16(1):21–9.

    PubMed  Google Scholar 

  21. Bosch RJ, Bennett K, Collier AC, Zackin R, Benson CA. Pretreatment factors associated with 3-year (144-week) virologic and immunologic responses to potent antiretroviral therapy. J Acquir Immune Defic Syndr 2007;44(3):268–77.

    PubMed  Google Scholar 

  22. Drusano GL, Bilello JA, Stein DS, et al. Factors influencing the emergence of resistance to indinavir: role of virologic, immunologic, and pharmacologic variables. J Infect Dis 1998;178(2):360–7.

    PubMed  CAS  Google Scholar 

  23. Nunez M, Lana R, Mendoza JL, Martin-Carbonero L, Soriano V. Risk factors for severe hepatic injury after introduction of highly active antiretroviral therapy. J Acquir Immune Defic Syndr 2001;27(5):426–31.

    PubMed  CAS  Google Scholar 

  24. Kalayjian R, Matining R, Tebas P, et al. Older persons have impaired restoration of naive CD4 cells in response to HAART. 13th Conf on Retroviruses and Oppor Infect, Denver 2006; Abstract#444.

    Google Scholar 

  25. Dieleman JP, Jambroes M, Gyssens IC, et al. Determinants of recurrent toxicity-driven switches of highly active antiretroviral therapy. The ATHENA cohort. AIDS 2002;16(5):737–45.

    PubMed  Google Scholar 

  26. Mocroft A, Youle M, Moore A, et al. Reasons for modification and discontinuation of antiretrovirals: results from a single treatment centre. AIDS 2001;15(2):185–94.

    PubMed  CAS  Google Scholar 

  27. Mallal SA, John M, Moore CB, James IR, McKinnon EJ. Contribution of nucleoside analogue reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection. AIDS 2000;14(10):1309–16.

    PubMed  CAS  Google Scholar 

  28. Heath KV, Hogg RS, Chan KJ, et al. Lipodystrophy-associated morphological, cholesterol and triglyceride abnormalities in a population-based HIV/AIDS treatment database. AIDS 2001;15(2):231–9.

    PubMed  CAS  Google Scholar 

  29. Martinez E, Mocroft A, Garcia-Viejo MA, et al. Risk of lipodystrophy in HIV-1-infected patients treated with protease inhibitors: a prospective cohort study. Lancet 2001;357(9256):592–8.

    PubMed  CAS  Google Scholar 

  30. Lichtenstein KA, Ward DJ, Moorman AC, et al. Clinical assessment of HIV-associated lipodystrophy in an ambulatory population. AIDS 2001;15(11):1389–98.

    PubMed  CAS  Google Scholar 

  31. Skiest DJ, Rubinstien E, Carley N, Gioiella L, Lyons R. The importance of comorbidity in HIV-infected patients over 55: a retrospective case-control study. Am J Med 1996;101(6):605–11.

    PubMed  CAS  Google Scholar 

  32. Shah SS, McGowan JP, Smith C, Blum S, Klein RS. Comorbid conditions, treatment, and health maintenance in older persons with human immunodeficiency virus infection in New York City. Clin Infect Dis 2002;35(10):1238–43.

    PubMed  Google Scholar 

  33. Bozzette SA, Ake CF, Tam HK, Chang SW, Louis TA. Cardiovascular and cerebrovascular events in patients treated for human immunodeficiency virus infection. N Engl J Med 2003;348(8):702–10.

    PubMed  CAS  Google Scholar 

  34. Friis-Moller N, Sabin CA, Weber R, et al. Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med 2003;349(21):1993–2003.

    PubMed  Google Scholar 

  35. Szczech LA, Hoover DR, Feldman JG, et al. Association between renal disease and outcomes among HIV-infected women receiving or not receiving antiretroviral therapy. Clin Infect Dis 2004;39(8):1199–206.

    PubMed  Google Scholar 

  36. Wyatt CM, Arons RR, Klotman PE, Klotman ME. Acute renal failure in hospitalized patients with HIV: risk factors and impact on in-hospital mortality. AIDS 2006;20(4):561–5.

    PubMed  Google Scholar 

  37. Mocroft A, Kirk O, Gatell J, et al. Chronic renal failure among HIV-1-infected patients. AIDS 2007;21(9):1119–27.

    PubMed  Google Scholar 

  38. Sullivan PS, Dworkin MS, Jones JL, Hooper WC. Epidemiology of thrombosis in HIV-infected individuals. The adult/adolescent spectrum of HIV disease project. AIDS 2000;14(3):321–4.

    PubMed  CAS  Google Scholar 

  39. Currier JS, Taylor A, Boyd F, et al. Coronary heart disease in HIV-infected individuals. J Acquir Immune Defic Syndr 2003;33(4):506–12.

    PubMed  Google Scholar 

  40. Goulet JL, Fultz SL, McGinnis KA, Justice AC. Relative prevalence of comorbidities and treatment contraindications in HIV-mono-infected and HIV/HCV-co-infected veterans. AIDS 2005;19 Suppl 3:S99–105.

    PubMed  Google Scholar 

  41. d’Arminio Monforte A, Abrams D, Pradier D, et al. HIV-induced immunodeficiency and risk of fatal AIDS-defining malignancies: resuts from the D:A:D study. 14th Conf on Retroviruses and Oppor Infect, Los Angeles 2007:Abstract #84.

    Google Scholar 

  42. Chaturvedi AK, Pfeiffer RM, Chang L, Goedert JJ, Biggar RJ, Engels EA. Elevated risk of lung cancer among people with AIDS. AIDS 2007;21(2):207–13.

    PubMed  Google Scholar 

  43. Valcour V, Shikuma C, Shiramizu B, et al. Higher frequency of dementia in older HIV-1 individuals: the Hawaii aging with HIV-1 Cohort. Neurology 2004;63(5):822–7.

    PubMed  CAS  Google Scholar 

  44. Rajagopalan S. Tuberculosis and aging: a global health problem. Clin Infect Dis 2001;33(7):1034–9.

    PubMed  CAS  Google Scholar 

  45. Schmader K. Herpes zoster in older adults. Clin Infect Dis 2001;32(10):1481–6.

    PubMed  CAS  Google Scholar 

  46. Appay V, Rowland-Jones SL. Premature ageing of the immune system: the cause of AIDS? Trends Immunol 2002;23(12):580–5.

    PubMed  CAS  Google Scholar 

  47. Fagnoni FF, Vescovini R, Passeri G, et al. Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 2000;95(9):2860–8.

    PubMed  CAS  Google Scholar 

  48. Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA, Herzenberg LA. CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest 1995;95(5):2061–6.

    PubMed  CAS  Google Scholar 

  49. Hessen MT, Kaye D, Murasko DM. Heterogeneous effects of exogenous lymphokines on lymphoproliferation of elderly subjects. Mech Ageing Dev 1991;58(1):61–73.

    PubMed  CAS  Google Scholar 

  50. Lederman MM, Ratnoff OD, Scillian JJ, Jones PK, Schacter B. Impaired cell-mediated immunity in patients with classic hemophilia. N Engl J Med 1983;308(2):79–83.

    PubMed  CAS  Google Scholar 

  51. Nagel JE, Chopra RK, Chrest FJ, et al. Decreased proliferation, interleukin 2 synthesis, and interleukin 2 receptor expression are accompanied by decreased mRNA expression in phytohemagglutinin-stimulated cells from elderly donors. J Clin Invest 1988;81(4):1096–102.

    PubMed  CAS  Google Scholar 

  52. Clerici M, Stocks NI, Zajac RA, et al. Detection of three distinct patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients. Independence of CD4 + cell numbers and clinical staging. J Clin Invest 1989;84(6):1892–9.

    PubMed  CAS  Google Scholar 

  53. Tilton JC, Luskin MR, Johnson AJ, et al. Changes in paracrine interleukin-2 requirement, CCR7 expression, frequency, and cytokine secretion of human immunodeficiency virus-specific CD4 + T cells are a consequence of antigen load. J Virol 2007;81(6):2713–25.

    PubMed  CAS  Google Scholar 

  54. Sieg SF, Harding CV, Lederman MM. HIV-1 infection impairs cell cycle progression of CD4(+) T cells without affecting early activation responses. J Clin Invest 2001;108(5):757–64.

    PubMed  CAS  Google Scholar 

  55. Arbogast A, Boutet S, Phelouzat MA, Plastre O, Quadri R, Proust JJ. Failure of T lymphocytes from elderly humans to enter the cell cycle is associated with low Cdk6 activity and impaired phosphorylation of Rb protein. Cell Immunol 1999;197(1):46–54.

    PubMed  CAS  Google Scholar 

  56. Fagnoni FF, Vescovini R, Mazzola M, et al. Expansion of cytotoxic CD8 + CD28- T cells in healthy ageing people, including centenarians. Immunology 1996;88(4):501–7.

    PubMed  CAS  Google Scholar 

  57. Ostrowski SR, Gerstoft J, Pedersen BK, Ullum H. A low level of CD4 + CD28 + T cells is an independent predictor of high mortality in human immunodeficiency virus type 1-infected patients. J Infect Dis 2003;187(11):1726–34.

    PubMed  Google Scholar 

  58. Lane HC, Masur H, Edgar LC, Whalen G, Rook AH, Fauci AS. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med 1983;309(8):453–8.

    PubMed  CAS  Google Scholar 

  59. Weksler ME, Szabo P. The effect of age on the B-cell repertoire. J Clin Immunol 2000;20(4):240–9.

    PubMed  CAS  Google Scholar 

  60. Sansoni P, Cossarizza A, Brianti V, et al. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood 1993;82(9):2767–73.

    PubMed  CAS  Google Scholar 

  61. Boudet F, Lecoeur H, Gougeon ML. Apoptosis associated with ex vivo down-regulation of Bcl-2 and up-regulation of Fas in potential cytotoxic CD8 + T lymphocytes during HIV infection. J Immunol 1996;156(6):2282–93.

    PubMed  CAS  Google Scholar 

  62. Aggarwal S, Gupta S. Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, and Bax. J Immunol 1998;160(4):1627–37.

    PubMed  CAS  Google Scholar 

  63. Viard JP, Mocroft A, Chiesi A, et al. Influence of age on CD4 cell recovery in human immunodeficiency virus-infected patients receiving highly active antiretroviral therapy: evidence from the EuroSIDA study. J Infect Dis 2001;183(8):1290–4.

    PubMed  CAS  Google Scholar 

  64. Gandhi RT, Spritzler J, Chan E, et al. Effect of baseline- and treatment-related factors on immunologic recovery after initiation of antiretroviral therapy in HIV-1-positive subjects: results from ACTG 384. J Acquir Immune Defic Syndr 2006;42(4):426–34.

    PubMed  CAS  Google Scholar 

  65. Fry TJ, Mackall CL. What limits immune reconstitution in HIV infection? Divergent tools converge on thymic function. AIDS 2001;15(14):1881–2.

    PubMed  CAS  Google Scholar 

  66. Lederman MM, McKinnis R, Kelleher D, et al. Cellular restoration in HIV infected persons treated with abacavir and a protease inhibitor: age inversely predicts naive CD4 cell count increase. AIDS 2000;14(17):2635–42.

    PubMed  CAS  Google Scholar 

  67. Cohen Stuart J, Hamann D, Borleffs J, et al. Reconstitution of naive T cells during antiretroviral treatment of HIV-infected adults is dependent on age. AIDS 2002;16(17):2263–6.

    PubMed  CAS  Google Scholar 

  68. Kalayjian RC, Spritzler J, Pu M, et al. Distinct mechanisms of T cell reconstitution can be identified by estimating thymic volume in adult HIV-1 disease. J Infect Dis 2005;192(9):1577–87.

    PubMed  Google Scholar 

  69. Tosi P, Kraft R, Luzi P, et al. Involution patterns of the human thymus. I Size of the cortical area as a function of age. Clin Exp Immunol 1982;47(2):497–504.

    PubMed  CAS  Google Scholar 

  70. Douek DC, McFarland RD, Keiser PH, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 1998;396(6712):690–5.

    PubMed  CAS  Google Scholar 

  71. Jamieson BD, Douek DC, Killian S, et al. Generation of functional thymocytes in the human adult. Immunity 1999;10(5):569–75.

    PubMed  CAS  Google Scholar 

  72. Zhang L, Lewin SR, Markowitz M, et al. Measuring recent thymic emigrants in blood of normal and HIV-1-infected individuals before and after effective therapy. J Exp Med 1999;190(5):725–32.

    PubMed  CAS  Google Scholar 

  73. Steffens CM, Al-Harthi L, Shott S, Yogev R, Landay A. Evaluation of thymopoiesis using T cell receptor excision circles (TRECs): differential correlation between adult and pediatric TRECs and naive phenotypes. Clin Immunol 2000;97(2):95–101.

    PubMed  CAS  Google Scholar 

  74. Hatzakis A, Touloumi G, Karanicolas R, et al. Effect of recent thymic emigrants on progression of HIV-1 disease. Lancet 2000;355(9204):599–604.

    PubMed  CAS  Google Scholar 

  75. Steffens CM, Smith KY, Landay A, et al. T cell receptor excision circle (TREC) content following maximum HIV suppression is equivalent in HIV-infected and HIV-uninfected individuals. AIDS 2001;15(14):1757–64.

    PubMed  CAS  Google Scholar 

  76. Dion ML, Poulin JF, Bordi R, et al. HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 2004;21(6):757–68.

    PubMed  CAS  Google Scholar 

  77. McCune JM, Loftus R, Schmidt DK, et al. High prevalence of thymic tissue in adults with human immunodeficiency virus-1 infection. J Clin Invest 1998;101(11):2301–8.

    PubMed  CAS  Google Scholar 

  78. Smith KY, Valdez H, Landay A, et al. Thymic size and lymphocyte restoration in patients with human immunodeficiency virus infection after 48 weeks of zidovudine, lamivudine, and ritonavir therapy. J Infect Dis 2000;181(1):141–7.

    PubMed  CAS  Google Scholar 

  79. Teixeira L, Valdez H, McCune JM, et al. Poor CD4 T cell restoration after suppression of HIV-1 replication may reflect lower thymic function. Aids 2001;15(14):1749–56.

    PubMed  CAS  Google Scholar 

  80. Franco JM, Rubio A, Martinez-Moya M, et al. T-cell repopulation and thymic volume in HIV-1-infected adult patients after highly active antiretroviral therapy. Blood 2002;99(10):3702–6.

    PubMed  CAS  Google Scholar 

  81. Kolte L, Dreves AM, Ersboll AK, et al. Association between larger thymic size and higher thymic output in human immunodeficiency virus-infected patients receiving highly active antiretroviral therapy. J Infect Dis 2002;185(11):1578–85.

    PubMed  Google Scholar 

  82. Ruiz-Mateos E, Rubio A, Vallejo A, et al. Thymic volume is associated independently with the magnitude of short- and long-term repopulation of CD4 + T cells in HIV-infected adults after highly active antiretroviral therapy (HAART). Clin Exp Immunol 2004;136(3):501–6.

    PubMed  CAS  Google Scholar 

  83. Heitger A, Neu N, Kern H, et al. Essential role of the thymus to reconstitute naive (CD45RA+) T-helper cells after human allogeneic bone marrow transplantation. Blood 1997;90(2):850–7.

    PubMed  CAS  Google Scholar 

  84. Walker RE, Carter CS, Muul L, et al. Peripheral expansion of pre-existing mature T cells is an important means of CD4 + T-cell regeneration HIV-infected adults. Nat Med 1998;4(7):852–6.

    PubMed  CAS  Google Scholar 

  85. Haynes BF, Hale LP, Weinhold KJ, et al. Analysis of the adult thymus in reconstitution of T lymphocytes in HIV-1 infection. J Clin Invest 1999;103(6):921.

    PubMed  Google Scholar 

  86. Kimmig S, Przybylski GK, Schmidt CA, et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med 2002;195(6):789–94.

    PubMed  CAS  Google Scholar 

  87. Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z, Victorino RM. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J Immunol 2002;169(6):3400–6.

    PubMed  CAS  Google Scholar 

  88. Bouscarat F, Levacher-Clergeot M, Dazza MC, et al. Correlation of CD8 lymphocyte activation with cellular viremia and plasma HIV RNA levels in asymptomatic patients infected by human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1996;12(1):17–24.

    PubMed  CAS  Google Scholar 

  89. Leng Q, Borkow G, Weisman Z, Stein M, Kalinkovich A, Bentwich Z. Immune activation correlates better than HIV plasma viral load with CD4 T-cell decline during HIV infection. J Acquir Immune Defic Syndr 2001;27(4):389–97.

    PubMed  CAS  Google Scholar 

  90. Giorgi JV, Lyles RH, Matud JL, et al. Predictive value of immunologic and virologic markers after long or short duration of HIV-1 infection. J Acquir Immune Defic Syndr 2002;29(4):346–55.

    PubMed  Google Scholar 

  91. Anthony KB, Yoder C, Metcalf JA, et al. Incomplete CD4 T cell recovery in HIV-1 infection after 12 months of highly active antiretroviral therapy is associated with ongoing increased CD4 T cell activation and turnover. J Acquir Immune Defic Syndr 2003;33(2):125–33.

    PubMed  Google Scholar 

  92. Benito JM, Lopez M, Lozano S, et al. Differential upregulation of CD38 on different T-cell subsets may influence the ability to reconstitute CD4 + T cells under successful highly active antiretroviral therapy. J Acquir Immune Defic Syndr 2005;38(4):373–81.

    PubMed  CAS  Google Scholar 

  93. Hunt PW, Martin JN, Sinclair E, et al. T cell activation is associated with lower CD4 + T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis 2003;187(10):1534–43.

    PubMed  CAS  Google Scholar 

  94. Kalayjian R, Matining R, Tebas P, et al. Older persons have imparied restoration of naive CD4 cells in response to HAART. 13th Conf on Retroviruses and Oppor Infect, Denver 2006:Abstract #444.

    Google Scholar 

  95. Landay A, da Silva BA, King MS, et al. Evidence of ongoing immune reconstitution in subjects with sustained viral suppression following 6 years of lopinavir-ritonavir treatment. Clin Infect Dis 2007;44(5):749–54.

    PubMed  CAS  Google Scholar 

  96. Badley AD, Pilon AA, Landay A, Lynch DH. Mechanisms of HIV-associated lymphocyte apoptosis. Blood 2000;96(9):2951–64.

    PubMed  CAS  Google Scholar 

  97. Carpentier I, Coornaert B, Beyaert R. Function and regulation of tumor necrosis factor type 2. Curr Med Chem 2004;11(16):2205–12.

    PubMed  CAS  Google Scholar 

  98. Grelli S, Campagna S, Lichtner M, et al. Spontaneous and anti-Fas-induced apoptosis in lymphocytes from HIV-infected patients undergoing highly active anti-retroviral therapy. AIDS 2000;14(8):939–49.

    PubMed  CAS  Google Scholar 

  99. Erikstrup C, Kallestrup P, Zinyama-Gutsire RB, et al. Reduced mortality and CD4 cell loss among carriers of the interleukin-10 -1082G allele in a Zimbabwean cohort of HIV-1-infected adults. AIDS 2007;21(17):2283–91.

    PubMed  CAS  Google Scholar 

  100. Godfried MH, van der Poll T, Weverling GJ, et al. Soluble receptors for tumor necrosis factor as predictors of progression to AIDS in asymptomatic human immunodeficiency virus type 1 infection. J Infect Dis 1994;169(4):739–45.

    PubMed  CAS  Google Scholar 

  101. Stein DS, Lyles RH, Graham NM, et al. Predicting clinical progression or death in subjects with early-stage human immunodeficiency virus (HIV) infection: a comparative analysis of quantification of HIV RNA, soluble tumor necrosis factor type II receptors, neopterin, and beta2-microglobulin. Multicenter AIDS Cohort Study. J Infect Dis 1997;176(5):1161–7.

    PubMed  CAS  Google Scholar 

  102. Benveniste O, Flahault A, Rollot F, et al. Mechanisms involved in the low-level regeneration of CD4 + cells in HIV-1-infected patients receiving highly active antiretroviral therapy who have prolonged undetectable plasma viral loads. J Infect Dis 2005;191(10):1670–9.

    PubMed  Google Scholar 

  103. Haas DW, Geraghty DE, Andersen J, et al. Immunogenetics of CD4 lymphocyte count recovery during antiretroviral therapy: An AIDS Clinical Trials Group study. J Infect Dis 2006;194(8):1098–107.

    PubMed  CAS  Google Scholar 

  104. Sodora DL, Silvestri G. Immune activation and AIDS pathogenesis. AIDS 2008;22(4):439–46.

    PubMed  Google Scholar 

  105. Hodes RJ, Hathcock KS, Weng NP. Telomeres in T and B cells. Nat Rev Immunol 2002;2(9):699–706.

    PubMed  CAS  Google Scholar 

  106. Wolthers KC, Bea G, Wisman A, et al. T cell telomere length in HIV-1 infection: no evidence for increased CD4 + T cell turnover. Science 1996;274(5292):1543–7.

    PubMed  CAS  Google Scholar 

  107. Palmer LD, Weng N, Levine BL, June CH, Lane HC, Hodes RJ. Telomere length, telomerase activity, and replicative potential in HIV infection: analysis of CD4 + and CD8 + T cells from HIV-discordant monozygotic twins. J Exp Med 1997;185(7):1381–6.

    PubMed  CAS  Google Scholar 

  108. Kaushal S, Landay AL, Lederman MM, et al. Increases in T cell telomere length in HIV infection after antiretroviral combination therapy for HIV-1 infection implicate distinct population dynamics in CD4 + and CD8 + T cells. Clin Immunol 1999;92(1):14–24.

    PubMed  CAS  Google Scholar 

  109. Effros RB, Allsopp R, Chiu CP, et al. Shortened telomeres in the expanded CD28-CD8 + cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 1996;10(8):F17–22.

    PubMed  CAS  Google Scholar 

  110. Papagno L, Spina CA, Marchant A, et al. Immune activation and CD8 + T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol 2004;2(2):E20.

    PubMed  Google Scholar 

  111. Kalayjian RC, Landay A, Pollard RB, et al. Age-related immune dysfunction in health and in human immunodeficiency virus (HIV) disease: association of age and HIV infection with naive CD8 + cell depletion, reduced expression of CD28 on CD8 + cells, and reduced thymic volumes. J Infect Dis 2003;187(12):1924–33.

    PubMed  Google Scholar 

  112. Kalayjian R, Spritzler J, Matining R, et al. Differences in the activation of tumor necrosis factor superfamily pathways may contributeto age-associated differences in naive CD4 cell recovery and to functional immune responses to HAART. 15th Conf on Retroviruses and Oppor Infect, Boston 2008; Abstract#437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Kalayjian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kalayjian, R.C., Al-Harthi, L. (2009). The Effects of Aging on HIV Disease. In: Paul, R., Sacktor, N., Valcour, V., Tashima, K. (eds) HIV and the Brain. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-434-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-434-6_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-08-4

  • Online ISBN: 978-1-59745-434-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics