Skip to main content

New Directions in Pulmonary Hypertension Therapy

  • Chapter
Pulmonary Hypertension

Part of the book series: Contemporary Cardiology™ ((CONCARD))

  • 1571 Accesses

Great progress in the understanding of the pathogenesis of as well as the therapy for pulmonary hypertension has been made in the last 20 years, but many challenges remain. Combinations of prostanoids, endothelin antagonists, and phosphodiesterase inhibitors are seeing increasing use, and clinical trials currently underway should identify which combinations work best. Nebulized treprostinil, selective endothelin-A antagonists, and newer phosphodiesterase inhibitors may offer advantages and expand our therapeutic armamentarium in the near future. Clinical trials of statins, SSRIs, VIP, potassium channel activators, or antiplatelets are also ongoing or are likely to commence in the near future. Agents that interrupt signaling pathways such as Rho kinases and tyrosine kinases also show promise. The biological plausibility, availability, and relative safety of these newer agents make it tempting to prescribe them now, particularly when faced with gravely ill patients. However, these and all future therapies require proof of efficacy and safety from properly conducted clinical trials before widespread use can be advocated. Too many patients are still severely limited by and dying of pulmonary arterial hypertension to warrant therapeutic complacency at this time. While we await proof of safety and efficacy, we must continue to enroll patients in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999; 341:709–17.

    Article  PubMed  CAS  Google Scholar 

  2. Pitt B, Remme WJ, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348:1309–21.

    Article  PubMed  CAS  Google Scholar 

  3. Ikram H, Maslowski AH, Nicholls GM, et al. Haemodynamic and hormonal effects of captopril in primary pulmonary hypertension. Br Heart J 1982; 48:541–5.

    Article  PubMed  CAS  Google Scholar 

  4. Leier CV, Bambach D, Nelson S, et al. Captopril and primary pulmonary hypertension. Circulation 1983; 67:155–61.

    PubMed  CAS  Google Scholar 

  5. Schafer A, Fraccarollo D, Hildemann SK, Tas P, Ertl G, Bauersachs J. Addition of the selective aldosterone receptor antagonist eplerenone to ACE inhibition in heart failure: Effect on endothelial dysfunction. Cardiovasc Res 2003; 58(3):655–62.

    Article  PubMed  CAS  Google Scholar 

  6. Macdonald JE, Kennedy N, Struthers AD. Effects of spironolactone on endothelial function, vascular angiotensin converting enzyme activity, and other prognostic markers in patients with mild heart failure already taking optimal treatment. Heart 2004; 90(7):765–70.

    Article  PubMed  CAS  Google Scholar 

  7. Abiose AK, Mansoor GA, Barry M, Soucier R, Nair CK, Hager D. Effect of spironolactone on endothelial function in patients with congestive heart failure on conventional medical therapy. Am J Cardiol 2004; 93(12):1564–6.

    Article  PubMed  CAS  Google Scholar 

  8. Mitchell BM, Smith AD, Webb RC, Dorrance AM. Aldosterone decreases endothelium-dependent relaxation by down-regulating GYP cyclohydrolase. Hypertension 2003; 42:435(P161). Abstract.

    Google Scholar 

  9. Fraccarollo D, Galuppo P, Hildemann S, Christ M, Ertl G, Bauersachs J. Additive improvement of left ventricular remodeling and neurohormonal activation by aldosterone receptor blockade with eplerenone and ACE inhibition in rats with myocardial infarction. J Am Coll Cardiol 2003; 42(9):1666–73.

    Article  PubMed  CAS  Google Scholar 

  10. Yancy CW, Saltzberg MT, Berkowitz RL, et al. Safety and feasibility of using serial infusions of nesiritide for heart failure in an outpatient setting (from the FUSION 1 trial). Am J Cardiol 2004; 94:595–601.

    Article  PubMed  CAS  Google Scholar 

  11. Kurian DC, Wagner IJ, Klapholz M. Nesiritide in pulmonary hypertension. Chest 2004; 126(1):302–5.

    Article  PubMed  Google Scholar 

  12. Gheorghiade M, Gattis WA, O’Connor CM, et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure. JAMA 2004; 291:1963–71.

    Article  PubMed  CAS  Google Scholar 

  13. Klinger JR, Warburton RR, Pietras L, Hill NS. Brain natriuretic peptide inhibits hypoxic pulmonary hypertension in rats. J Appl Physiol 1998; 84(5):1646–52.

    PubMed  CAS  Google Scholar 

  14. Lok BL, Ashrafian H, Mukerjee D, Coghlan JG, Timms PM. The natriuretic peptides and their role in disorders of right heart dysfunction and pulmonary hypertension. Clin Biochem 2004; 37:847–56.

    Article  CAS  Google Scholar 

  15. Wagenvoort CA, Mulder PG. Thrombotic lesions in primary plexogenic arteriopathy. Similar pathogenesis or complication? Chest 1993; 103:844–9.

    PubMed  CAS  Google Scholar 

  16. Fuster V, Steele PM, Edwards WD, et al. Primary pulmonary hypertension: Natural history and the importance of thrombosis. Circulation 1984; 70:580–7.

    PubMed  CAS  Google Scholar 

  17. Welsh CH, Hassell KL, Badesch DB, Kressin DC, Marlar RA. Coagulation and fibrinolytic profiles in patients with severe pulmonary hypertension. Chest 1996; 110:710–7.

    Article  PubMed  CAS  Google Scholar 

  18. Eisenberg PR, Lucore C, Kaufman L, et al. Fibrinopeptide A levels indicative of pulmonary vascular thrombosis in patients with primary pulmonary hypertension. Circulation 1990; 82:841–7.

    PubMed  CAS  Google Scholar 

  19. Rich S, Kaufmann E, Levy PS. The effects of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 1992; 327:76–81.

    PubMed  CAS  Google Scholar 

  20. Frank H, Mlczoch J, Huber K, et al. The effect of anticoagulant therapy in anorectic induced pulmonary hypertension. Chest 1997; 112:714–21.

    Article  PubMed  CAS  Google Scholar 

  21. Eriksson BI, Agnelli G, Cohen AT, et al. Direct thrombin inhibitor melagatran followed by oral ximelagatran in comparison with enoxaparin for prevention of venous thromboembolism after total hip or knee replacement. Thromb Haemost 2003; 89:288–96.

    PubMed  CAS  Google Scholar 

  22. Francis CW, Davidson BL, Berkowitz SD, et al. Ximelagatran versus warfarin for the prevention of venous thromboembolism after total knee arthroplasty. A randomized, double-blind trial. Ann Intern Med 2002; 137:648–55.

    PubMed  CAS  Google Scholar 

  23. Francis CW, Berkowitz SD, Comp PC, et al. Comparison of ximelagatran with warfarin for the prevention of venous thromboembolism after total knee replacement. N Engl J Med 2003; 349:1703–12.

    Article  PubMed  CAS  Google Scholar 

  24. Schulman S, Wåhlander K, Lundström T, et al. Secondary prevention of venous thromboembolism with the oral direct thrombin inhibitor ximelagatran. N Engl J Med 2003; 349:1713–21.

    Article  PubMed  CAS  Google Scholar 

  25. Olsson SB; Executive Steering Committee on behalf of the SPORTIF III Investigators. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): Randomised controlled trial. Lancet 2003; 362(22):1691–8.

    PubMed  CAS  Google Scholar 

  26. Halperin JL, Executive Steering Committee, SPORTIF III and V Study Investigators. Ximelagatran compared with warfarin for prevention of thromboembolism in patients with nonvalvular atrial fibrillation: Rationale, objectives, and design of a pair of clinical studies and baseline patient characteristics (SPORTIF III and V). Am Heart J 2003; 146(3):431–8.

    Article  PubMed  CAS  Google Scholar 

  27. Koopman MM, Buller HR. Short- and long-acting synthetic pentasaccharides. J Intern Med 2003; 254(4):335–42.

    Article  PubMed  CAS  Google Scholar 

  28. Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodelling in pulmonary hypertension. Prog Cardiovasc Dis 2002; 45:173–202.

    Article  PubMed  CAS  Google Scholar 

  29. McLaughlin VV, Genthner DE, Panella MM, Rich S. Reduction in pulmonary vascular resistance with long-term epoprostenol (prostacyclin) therapy in primary pulmonary hypertension. N Engl J Med 1998; 338(5):273–7.

    Article  PubMed  CAS  Google Scholar 

  30. Jasmin JF, Lucas M, Cernacek P, Dupuis J. Effectiveness of a nonselective ETA/B and a selective ETA antagonist in rats with monocrotaline-induced pulmonary hypertension. Circulation 2001; 103:314–8.

    PubMed  CAS  Google Scholar 

  31. Wong J, Reddy VM, Hendricks-Munoz K, et al. Endothelin-1 vasoactive responses in lambs with pulmonary hypertension and increased pulmonary blood flow. Am J Physiol 1995; 269:H1965– H1972.

    PubMed  CAS  Google Scholar 

  32. Rondelet B, Kerbaul F, Motte S, et al. Bosentan for the prevention of overcirculation-induced experimental pulmonary arterial hypertension. Circulation 2003; 107:1329–35.

    Article  PubMed  CAS  Google Scholar 

  33. Prie S, Leung TK, Cernacek P, Ryan JW, Dupuis J. The orally active ET(A) receptor antagonist (+)-(S)-2-(4,6-dimethoxy-pyrimidin-2-yloxy)-3-methoxy-3,3-diphenyl-propionic acid (LU 135252) prevents the development of pulmonary hypertension and endothelial metabolic dysfunction in monocrotaline-treated rats. J Pharmacol Exp Ther 1997; 282:1312–8.

    PubMed  CAS  Google Scholar 

  34. Prie S, Stewart DJ, Dupuis J. Endothelin-A receptor blockade improves nitric oxide-mediated vasodilation in monocrotaline-induced pulmonary hypertension. Circulation 1998; 97:2169–74.

    PubMed  CAS  Google Scholar 

  35. Hill NS, Warburton RR, Pietras L, Klinger JR. Nonspecific endothelin-receptor antagonist blunts monocrotaline-induced pulmonary hypertension in rats. J Appl Physiol 1997; 83(4):1209–15.

    PubMed  CAS  Google Scholar 

  36. Zhao L, Mason NA, Morrell NW, et al. Sildenafil inhibits hypoxia induced pulmonary hypertension. Circulation 2001; 104:424–8.

    Article  PubMed  CAS  Google Scholar 

  37. McLaughlin VV, Shillington A, Rich S. Survival in primary pulmonary hypertension: The impact of epoprostenol therapy. Circulation 2002; 106:1477–82.

    Article  PubMed  CAS  Google Scholar 

  38. Sitbon O, Badesch DB, Channick RN, et al. Effects of the dual endothelin antagonist bosentan in patients with pulmonary arterial hypertension: A 1-year follow-up study. Chest 2003; 124:247–54.

    Article  PubMed  CAS  Google Scholar 

  39. McLaughlin V, Sitbon O, Rubin LJ, et al. The effect of first-line bosentan on survival of patients with primary pulmonary hypertension (Abstract). Am J Respir Crit Care Med 2003; 167:A442.

    Google Scholar 

  40. Newman JH, Wheeler L, Lane KB, et al. Mutations in the gene for bone morphogenetic protein receptor 2 as a cause of primary pulmonary hypertension in a large kindred. N Engl J Med 2001; 45:319–24.

    Article  Google Scholar 

  41. Lane KB, Machado RD, Pauciulo JR, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nat Genet 2000; 26:81–4.

    CAS  Google Scholar 

  42. Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43:13S–24S.

    Article  PubMed  CAS  Google Scholar 

  43. Khan SN, Lane JM. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in orthopaedic applications. Exp Opin Biol Ther 2004; 4(5):741–8.

    Article  CAS  Google Scholar 

  44. Ohnaka K, Shimoda S, Nawata H, et al. Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biochem Biophys Res Commun 2001; 287(2):337–42.

    Article  PubMed  CAS  Google Scholar 

  45. Emmanuele L, Ortmann J, Doerflinger T, Traupe T, Barton M. Lovastatin stimulates human vascular smooth muscle cell expression of bone morphogenetic protein-2, a potent inhibitor of low-density lipoprotein-stimulated cell growth. Biochem Biophys Res Commun 2003; 302(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  46. Abenhaim L, Moride Y, Brenot F, et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N Engl J Med 1996; 335:609–16.

    Article  PubMed  CAS  Google Scholar 

  47. Marcos E, Fadel E, Sanchez O, et al. Serotonin-induced smooth muscle hyperplasia in various forms of human pulmonary hypertension. Circ Res 2004; 94:1263–70.

    Article  PubMed  CAS  Google Scholar 

  48. Eddahibi S, Chaouat A, Morrell N, et al. Polymorphism of the serotonin transporter gene and pulmonary hypertension in chronic obstructive pulmonary disease. Circulation 2003; 108:1839–44.

    Article  PubMed  CAS  Google Scholar 

  49. Herve P, Launay JM, Scrobohaci ML, et al. Increased plasma serotonin in primary pulmonary hypertension. Am J Med 1995; 99:249–54.

    Article  PubMed  CAS  Google Scholar 

  50. Welsh DJ, Harnett M, MacLean M, Peacock AJ. Proliferation and signalling in fibroblasts: Role of 5-hydroxytryptamine2A receptor and transporter. Am J Respir Crit Care Med 2004; 170:252–9.

    Article  PubMed  Google Scholar 

  51. Eddahibi S, Fabre V, Boni C, Martres MP, Raffestin B, Hamon M, Adnot S. Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells: Relationship with the mitogenic action of serotonin. Circ Res 1999; 84:329–36.

    PubMed  CAS  Google Scholar 

  52. Eddahibi S, Hanoun N, Lanfumey L, Lesch K, Raffestin B, Hamon M, Adnot S. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J Clin Invest 2000; 105:1555–62.

    Article  PubMed  CAS  Google Scholar 

  53. Keegan A, Morecroft I, Smillie D, Hicks MN, MacLean MR. Contribution of the 5-HT1B receptor to hypoxia-induced pulmonary hypertension: Converging evidence using 5-HT1B-receptor knockout mice and the 5-HT1B/1D-receptor antagonist GR127935. Circ Res 2001; 89:1231–9.

    Article  PubMed  CAS  Google Scholar 

  54. Launay JM, Herve P, Peoc’h K, et al. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med 2002; 8:1129–35.

    Article  PubMed  CAS  Google Scholar 

  55. MacLean MR, Deuchar GA, Hicks MN, et al. Overexpression of the 5-hydroxytryptamine transporter gene: Effect on pulmonary hemodynamics and hypoxia induced pulmonary hypertension. Circulation 2004; 109(17):2150–5.

    Article  PubMed  CAS  Google Scholar 

  56. Petkov V, Mosgoeller W, Ziesche R, Raderer M, Stiebellehner L, Vonbank K, Funk GC, Hamilton G, Novotny C, Burian B, Block LH. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest. May 2003; 111(9):1339–46.

    Google Scholar 

  57. Maruno K, Absood A, Said SI. VIP inhibits basal and histamine-stimulated proliferation of human airway smooth muscle cells. Am J Physiol 1995; 268:L1047–L1051.

    PubMed  CAS  Google Scholar 

  58. Gunayadin S, Imai Y, Takanashi Y, et al. The effects of vasoactive intestinal polypeptide on monocrotaline induced pulmonary hypertensive rabbits following cardiopulmonary bypsass: A comparative study with isoproternol and nitroglycerine. Cardiovasc Surg 2002; 10:138–45.

    Article  Google Scholar 

  59. Yuan JX, Wang J, Juhaszova M, Gaine SP, Rubin LJ. Attenuated K$+$ channel gene transcription in primary pulmonary hypertension. Lancet 1998; 351:726–7.

    Article  PubMed  CAS  Google Scholar 

  60. Geraci MW, Moore M, Gesell T, et al. Gene expression patterns in the lungs of patients with primary pulmonary hypertension: A gene microarray analysis. Circ Res 2001; 88:555–62.

    PubMed  CAS  Google Scholar 

  61. Krick S, Platoshyn O, McDaniel SS, et al. Augmented K$+$ currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am J Physiol Lung Cell Mol Physiol 2001; 281:L887–L894.

    PubMed  CAS  Google Scholar 

  62. Katayose D, Ohe M, Yamauchi K, et al. Increased expression of PDGF A- and B-chain genes in rat lungs with hypoxic pulmonary hypertension. Am J Physiol 1993; 264:L100–L106.

    PubMed  CAS  Google Scholar 

  63. Berg JT, Breen EC, Fu Z, et al. Alveolar hypoxia increases gene expression of extracellular matrix proteins and platelet-derived growth factor-B in lung parenchyma. Am J Respir Crit Care Med 1998; 157:1920–8.

    Google Scholar 

  64. Powell PP, Klagsbrun M, Abraham JA, et al. Eosinophils expressing heparin-binding EGF-like growth factor mRNA localize around lung microvessels in pulmonary hypertension. Am J Pathol 1993; 143: 784–93.

    PubMed  CAS  Google Scholar 

  65. Arcot SS, Fagerland JA, Lipke DW, et al. Basic fibroblast growth factor alterations during development of monocrotaline-induced pulmonary hypertension in rats. Growth Factors 1995; 12:121–30.

    Article  PubMed  CAS  Google Scholar 

  66. Wanstall JC, Gambino A, Jeffery TK, et al. Vascular endothelial growth factor-B–deficient mice show impaired development of hypoxic pulmonary hypertension. Cardiovasc Res 2002; 55:361–8.

    Article  PubMed  CAS  Google Scholar 

  67. Hirose S, Hosoda Y, Furuya S, Otsuki T, Ikeda E. Expression of vascular endothelial growth factor and its receptors correlates closely with formation of the plexiform lesion in human pulmonary hypertension. Pathol Int 2000; 50:472–9.

    Article  PubMed  CAS  Google Scholar 

  68. Taraseviciene-Stewart T, Kasahara Y, Alger L, et al. Inhibition of the VEGF receptor-2 combined with chronic hypoxia causes cell death dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 2001; 15:427–38.

    Article  PubMed  CAS  Google Scholar 

  69. Campbell AI, Zhao Y, Sandhu R, Stewart DJ. Cell-based gene transfer of vascular endothelial growth factor attenuates monocrotaline-induced pulmonary hypertension. Circulation 2001; 104:2242–8.

    Article  PubMed  CAS  Google Scholar 

  70. Nagoaka T, Morio Y, Casanova N, et al. Rho/Rho-kinase signalling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cel Mol Physiol 2004; 287(4):L665–72.

    Google Scholar 

  71. Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arterioscler Thromb Vasc Biol 2001; 21:1712–9.

    Article  PubMed  CAS  Google Scholar 

  72. Kwak BR, Mulhaupt F, Mach F. Atherosclerosis: Anti-inflammatory and immunomodulatory activities of statins. Autoimmunity Rev 2003; 2: 332–8.

    Article  CAS  Google Scholar 

  73. Abe K, Shimokaya H, Morikawa K, et al. Long-term treatment with a rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res 2004; 94:385–93.

    Article  PubMed  CAS  Google Scholar 

  74. McMurtry IF, Bauer NR, Fagan KA, Nagaoka T, Gebb SA, Oka M. Hypoxia and Rho/Rho-kinase signaling. Lung development versus hypoxic pulmonary hypertension Adv Exp Med Biol 2003; 543:127–37.

    CAS  Google Scholar 

  75. Liu Y, Suzuki YJ, Day RM, Fanburg BL. Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ Res 2004; 95(6):579–86.

    Article  PubMed  CAS  Google Scholar 

  76. Shimokawa H, Hiramori K, Iinuma H, et al. Anti-anginal effect of fasudil, a Rho-kinase inhibitor, in patients with stable effort angina: A multicenter study. J Cardiovasc Pharmacol 2002; 40(5):751–61.

    Article  PubMed  CAS  Google Scholar 

  77. Tachibana E, Harada T, Shibuya M, et al. Intra-arterial infusion of fasudil hydrochloride for treating vasospasm following subarachnoid haemorrhage Acta Neurochir (Wien) 1999; 141(1):13–9.

    Google Scholar 

  78. Scott PH, Paul A, Belham CM, Peacock AJ, Wadsworth RM, Gould GW, Welsh D, Plevin R. Hypoxic stimulation of the stress-activated protein kinases in pulmonary artery fibroblasts. Am J Respir Crit Care Med 1998; 158:958–62.

    PubMed  CAS  Google Scholar 

  79. Welsh D, Peacock AJ, MacLean M, Harnett M. Chronic hypoxia induces constitutive p38 mitogen activated protein kinase activity that correlates with enhanced cellular proliferation in fibroblasts from rat pulmonary but not systemic arteries. Am J Respir Crit Care Med 2001; 164:282–9.

    PubMed  CAS  Google Scholar 

  80. Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 2000; 47:185–201.

    Article  PubMed  CAS  Google Scholar 

  81. Parasrampuria DA, de Boer P, Desai-Krieger D, Chow AT, Jones CR. Single-dose pharmacokinetics and pharmacodynamics of RWJ 67657, a specific p38 mitogen-activated protein kinase inhibitor: A first-in-human study. J Clin Pharmacol 2003; 43(4):406–13.

    Article  PubMed  CAS  Google Scholar 

  82. Rabinovitch M. Elastase and the pathobiology of unexplained pulmonary hypertension. Chest 1998; 114:213S–224S.

    Article  PubMed  CAS  Google Scholar 

  83. Cowan KN, Jones PL, Rabinovitch M. Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. J Clin Invest 2000; 105:21–34.

    Article  PubMed  CAS  Google Scholar 

  84. Cowan KN, Heilbut A, Humpl T, Lam C, Ito S, Rabinovitch M. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat Med 2000; 6:698–702.

    Article  PubMed  CAS  Google Scholar 

  85. Vieillard-Baron A, Frisdal E, Eddahibi S, et al. Effect of adenovirus-mediated lung TIMP-1 overexpression and role of MMP in pulmonary vascular remodeling. Circ Res 2000; 87:418–25.

    PubMed  CAS  Google Scholar 

  86. Srikala S, Shepherd FA. Targeting angiogenesis: A review of angiogenesis inhibitors in the treatment of lung cancer. Lung Cancer 2003; 42:S81–S91.

    Google Scholar 

  87. Griesenbach U, Geddes DM, Alton EW. Update on gene therapy for cystic fibrosis. Curr Opin Mol Ther 2003; 5(5):489–94.

    PubMed  CAS  Google Scholar 

  88. Ritchie M, Waggoner A, Davila-Roman VG, et al. Echocardiographic characterization of the improvement in right ventricular failure in patients with severe pulmonary hypertension after single lung transplantation. J Am Coll Cardiol 1993; 22:1170–4.

    Article  PubMed  CAS  Google Scholar 

  89. Hopkins WE, Ochoa LL, Richardson GW, et al. Comparison of the haemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J Heart Lung Transplant 1996; 15:100–5.

    PubMed  CAS  Google Scholar 

  90. Chiu RC. Adult stem cell therapy for heart failure. Exp Opin Biol Ther 2003; 3(2):215–25.

    Article  Google Scholar 

  91. Blyth KG, Martin TN, Mark PB, Dargie HJ, Peacock AJ. Late gadolinium enhancement (LGE), a marker of myocardial damage, can be detected by contrast enhanced-cardiac magnetic resonance imaging within the right ventricle of patients with severe pulmonary hypertension. Eur Respir J 2004; 24(S48):S235.

    Google Scholar 

  92. Voswinckel R, Enke B, Kohstall MG, et al. Pharmockinetic differences between inhaled treprostinil and inhaled iloprost in severe pulmonary hypertension. Eur Respir J 2004; 24(S48):S109.

    Google Scholar 

  93. Raeside DA, Smith A, Brown A, et al. Pulmonary artery pressure measurement during exercise testing in patients with suspected pulmonary hypertension. Eur Respir J 2000; 16(2):282–7.

    Article  PubMed  CAS  Google Scholar 

  94. Grünig E, Janssen B, Mereles D, et al. Abnormal pulmonary artery pressure response in asymptomatic carriers of primary pulmonary hypertension gene. Circulation 2000; 102:1145–50.

    PubMed  Google Scholar 

  95. Grünig E, Mereles D, Hildebrandt W, et al. Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J Am Coll Cardiol 2000; 35:980–7.

    Article  PubMed  Google Scholar 

  96. Nagaya N, Nishikimi T, Okano Y, et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol 1998; 31:202–8.

    Article  PubMed  CAS  Google Scholar 

  97. Nagaya N, Nishikimi T, Uematsu M, et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 2000; 102:865–70.

    PubMed  CAS  Google Scholar 

  98. Torbicki A, Kurzyna M, Kuca P, et al. Detectable serum cardiac troponin T as a marker of poor prognosis among patients with chronic precapillary pulmonary hypertension. Circulation 2003; 108:844–8.

    Article  PubMed  CAS  Google Scholar 

  99. Hoeper MM, Hohlfeld JM, Fabel H. Hyperuricemia in patients with right or left heart failure. Eur Respir J 1999; 13:682–5.

    Article  PubMed  CAS  Google Scholar 

  100. Nagaya N, Uematsu M, Satoh T, et al. Serum uric acid levels correlate with the severity and the mortality of primary pulmonary hypertension. Am J Respir Crit Care Med 1999; 160:487–92.

    PubMed  CAS  Google Scholar 

  101. Voelkel MA, Wynne KM, Badesch DB, Groves BM, Voelkel NF. Hyperuricemia in severe pulmonary hypertension. Chest 2000; 117:19–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Carlin, C.M., Peacock, A.J. (2008). New Directions in Pulmonary Hypertension Therapy. In: Hill, N.S., Farber, H.W. (eds) Pulmonary Hypertension. Contemporary Cardiology™. Humana Press. https://doi.org/10.1007/978-1-60327-075-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-075-5_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-661-0

  • Online ISBN: 978-1-60327-075-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics