Skip to main content

Selection and Design of Membrane Bioreactors in Environmental Bioengineering

  • Chapter
  • First Online:
Environmental Biotechnology

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 10))

Abstract

The membrane bioreactor (MBR) technology is nowadays widely considered as one of the most important innovations in the field of wastewater treatment in the last decades. MBRs couple suspended growth wastewater treatment with membrane filtration, and early applications were presented in late 1960s. However, the actual popularity occurred during the 1990s, with a higher and higher interest in the relevant strength aspects of the process compared with conventional activated sludge (CAS) systems: High process compactness, excellent effluent quality (often suitable for water reuse) and lower sludge production. In urban sewage treatment, the most important advantage derived from using membrane filtration is the elimination of the secondary settling tank for the treated wastewater clarification. This can lead to some positive consequences summarized as follows: the obvious footprint reduction due to the lack of the secondary settling tank; the indirect footprint reduction due to the possibility to operate at higher mixed liquor suspended solids concentrations; the biomass selection is influenced by their degradation efficiency for pollutants rather than their ability to form well-settling flocs, as commonly happens in CAS plants. Two parts can be distinguished within the chapter. At first, a general description of membrane processes is provided through a structure- and geometry-based classification of membranes, a description of some constituent materials, a brief introduction of the most important membrane processes and of the most relevant factors affecting membrane performance. Then, the chapter focuses on membrane bioreactors for solid/liquid separation. The possible MBR configurations are described (side-stream, membrane immersed in the biological tank and membrane immersed in an external tank). Besides, the fouling phenomenon is discussed with special care for those MBR operational aspects, which play a relevant role in fouling mechanisms, mainly being the characteristics of the mixed liquor suspension, the membrane geometry, the hydrodynamic conditions and the hydraulic regime. Major strategies for fouling control are presented: wastewater pre-treatment facilities, air scouring, intermittent permeation and cyclic backwashes with either permeate or chemical solutions. Furthermore, the “critical flux” concept is introduced as a tool for the periodical assessment of membrane performances under various operating conditions; the most suitable version of the critical flux for MBRs (the sustainable flux) is proposed as possible fouling control strategy aimed to minimize aggressive chemical cleanings, thus extending the membrane expected lifetime. A specific section of the chapter is dedicated to some of the most diffused commercial applications of the MBR technology, ranging from the flat sheet geometry (Kubota, Huber) to hollow fibre (Zenon, Memcor-US Filter, Mitsubishi) and tubular ones (X-Flow), from submerged to side-stream schemes. A COD-based approach for the design of suspended growth wastewater treatment processes for total nitrogen removal under steady-state conditions is presented. The method is essentially based on the well-consolidated approach proposed by the University of Cape Town in the early 1980s and formalised by International Water Association with the well-known activated sludge models (ASM1, ASM2 and AMS3). The method is based on the COD fractionation according to the biodegradability of both its particulate and soluble aliquots. The design value of SRT (solids retention time) is determined as a function of the required ammonia nitrogen quality in the effluent, the nitrifiers biokinetics and the anoxic fraction of the overall biological process volume. An iterative determination of the anoxic fraction and of the recycle ratio is then suggested, in order to achieve the needed nitrogen concentration in the effluent. The method presented and the design example are mainly aimed to make explicit the conventional equations in terms of the required effluent standards for nitrogen forms as well as to show the possible differences between CAS systems and MBRs due to the different biological kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheryan M (1998) Ultrafiltration and microfiltration handbook. Technomic Publishing Co. Inc., Lancaster, PA

    Google Scholar 

  2. Leiknes TO, Semmens MJ (2000) Water Sci Technol 41(10–11):101–108

    Google Scholar 

  3. Ødegaard H, Thorsen T, Melin E (2000) Water Sci Technol 41(10–11):33–42

    Google Scholar 

  4. Reid RC, Prausnitz JM, Poling BE (1997) The properties of gases and liquids, 4th edn. McGraw Hill, New York, NY

    Google Scholar 

  5. Stephenson T, Judd SJ, Jefferson B, Brindle K (2000) Membrane bioreactors for wastewater treatment. IWA Publishing, London

    Google Scholar 

  6. Bouhabila EH, Ben Aïm R, Buisson H (2001) Sep Purif Technol 22–23:123–132

    Article  Google Scholar 

  7. Defrance L (1997) Bioréacteur à membrane pour le traitement des eaux résiduaires: Etude du colmatage de membranes minérales et amélioration du flux de perméat par application de techniques hydrodynamiques. Thesis, Technology University of Compiègne, France

    Google Scholar 

  8. Wisniewski C, Grasmick A (1996) Med Fac Laundbouw Univ Gent 61(4b):2017–2024

    Google Scholar 

  9. Yamamoto K, Hiasa M, Mahmood T, Matsuo Y (1989) Water Sci Technol 21(4–5):43–54

    Google Scholar 

  10. Chang I-S Bag S-O, Lee C-H (2001) Process Biochem 36:855–860

    Article  Google Scholar 

  11. Magara Y, Itoh M (1991) Water Sci Technol 23:1583–1590

    Google Scholar 

  12. Krauth K, Staab KF (1993) Water Res 27(3):405–411

    Article  Google Scholar 

  13. Ishiguro K, Imai K, Sawada S (1994) Desalination 98(1–3):119–126

    Article  Google Scholar 

  14. Ueda T, Hata K (1999) Water Res 33(12):2888–2892

    Article  Google Scholar 

  15. Wisniewski C, Grasmick A (1998) Colloid Surf A 138:403–411

    Article  Google Scholar 

  16. Shimizu Y, Uryu K, Okuno Y, Ohtsubo S, Watanabe A (1997) J Ferment Bioeng 83(6):583–589

    Article  Google Scholar 

  17. Connel H, Zhu J, Bassi A (1999) J Membrane Sci 153:121–139

    Article  Google Scholar 

  18. Laspidou CS, Rittmann BE (2002) Water Res 36:2711–2720

    Article  Google Scholar 

  19. Zhang X, Bishop PL, Kinkle BK (1999) Water Sci Technol 39(7):211–218

    Google Scholar 

  20. Frølund B, Griebe T, Nielsen PH (1995) Appl Microbiol Biotechnol 43:755–761

    Article  Google Scholar 

  21. Nagaoka H (1999) Water Sci Technol 39(8):107–114

    Google Scholar 

  22. Nagaoka H, Kono S, Yamanishi S, Miya A (2000) Water Sci Technol 41(10–11):355–362

    Google Scholar 

  23. Nagaoka H, Ueda S, Miya A (1996) Water Sci Technol 34(9):165–172

    Google Scholar 

  24. Nagaoka H, Yamanishi S, Miya A (1998) Water Sci Technol 38(4–5):497–504

    Google Scholar 

  25. Rosenberger S, Kraume M (2002) Desalination 151:195–200

    Article  Google Scholar 

  26. Cho BD, Fane AG (2002) J Membrane Sci 209:391–403

    Article  Google Scholar 

  27. Chang S, Fane AG (2000) J Chem Technol Biotechnol 75:533–540

    Article  Google Scholar 

  28. Chang S, Fane AG, Vigneswaran S (2002) AIChE J 48(10):2203–2212

    Article  Google Scholar 

  29. Visvanathan C, Yang BS, Muttamara S, Maythanukhraw R (1997) Water Sci Technol 36(12):259–266

    Google Scholar 

  30. Dufresne R, Lavallee HC, Lebrun RE, Lo SN (1998) Tappi J 81(4):131–135

    Google Scholar 

  31. Xing C-H, Tardieu E, Qian Y, Wen X-H (2000) J Membrane Sci 177:73–82

    Article  Google Scholar 

  32. Ueda T, Hata K, Kikuoka Y (1996) Water Sci Technol 34(9):189–196

    Google Scholar 

  33. Fan X-J, Urbain V, Qian Y, Manem J (2000) Water Sci Technol 41(10–11):243–250

    Google Scholar 

  34. Chang YJ, Choo KH, Benjamin M-M, Reiber S (1998) J Am Water Works Assoc 90(5):90–102

    Google Scholar 

  35. STOWA (2002) MBR for municipal wastewater treatment – pilot plant research Beverwijk WWTP – side studies, STOWA Technical Report, Utrecht, The Netherlands

    Google Scholar 

  36. Thomas H, Judd S, Murrer J (2000) Membrane Technol 122:10–13

    Article  Google Scholar 

  37. Ghosh R, Cui ZF (1999) J Membrane Sci 162:91–102

    Article  Google Scholar 

  38. Cui ZF, Bellara SR, Homewood P (1997) J Membrane Sci 128:83–91

    Article  Google Scholar 

  39. Chang IS, Judd SJ (2002) Process Biochem 37(8):915–920

    Article  Google Scholar 

  40. Kishino H, Ishida H, Iwabu H, Nakano I (1996) Desalination 106(1–3):115–119

    Article  Google Scholar 

  41. Chisti Y, Wenge F, Moo-Young M (1995) Chem Eng J 57:B7–B13

    Google Scholar 

  42. Ueda T, Hata TK, Kikuoka Y, Seino O (1997) Water Res 31(3):489–494

    Article  Google Scholar 

  43. Liu R, Huang X, Wang CW, Chen LJ, Qian Y (2000) Process Biochem 36(3):249–254

    Article  Google Scholar 

  44. Cui ZF, Chang S, Fane AG (2003) J Membrane Sci 221:1–35

    Article  Google Scholar 

  45. Field RW, Wu D, Howell JA, Gupta BB (1995) J Membrane Sci 100:259–272

    Article  Google Scholar 

  46. Howell JA (1995) J Membrane Sci 107:165–171

    Article  Google Scholar 

  47. Wu D, Howell JA, Field RW (1999) J Membrane Sci 152:89–98

    Article  Google Scholar 

  48. Bouhabila EH, Ben Aïm R, Buisson H (1998) Desalination 118:315–322

    Article  Google Scholar 

  49. Li H, Fane AG, Coster HGL, Vigneswaran S (1998) J Membrane Sci 149:83–97

    Article  Google Scholar 

  50. Kwon DY, Vigneswaran S (1998) Water Sci Technol 38(4–5):481–488

    Google Scholar 

  51. Guglielmi G (2003) Membrane bioreactors for municipal wastewater treatment. PhD Thesis, Department of Civil and Environmental Engineering, University of Trento, Italy

    Google Scholar 

  52. Le Clech P, Jefferson B, Judd SJ (2003) J Membrane Sci 227:81–93

    Article  Google Scholar 

  53. Côté P, Buisson H, Pound C, Arakaki G (1997) Desalination 113:189–196

    Article  Google Scholar 

  54. Rosenberger S, Krüger U, Witzig R, Manz W, Szewzyk U, Kraume M (2002) Water Res 36:413–420

    Article  Google Scholar 

  55. Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering treatment and Reuse – Metcalf & Eddy Inc., 4th edn. McGraw Hill International Ed., New York, NY

    Google Scholar 

  56. Ekama GA, Marais GvR, Siebritz IP, Pitman AR, Keay GFP, Buchan L, Gerber A, Smollen M (1983) Theory, design and operation of nutrient removal activated sludge processes. Water Research Commission, Pretoria, Republic of South Africa

    Google Scholar 

  57. Andreottola G, Foladori P, Ferrai M, Ziglio G (2002) Respirometria applicata alla depurazione delle acque, principi e metodi. Laboratorio di Ingegneria Sanitaria Ambientale, Università degli Studi di Trento, Italy

    Google Scholar 

  58. Ekama GA, Dold PL, Marais GVR (1986) Water Sci Technol 18(6):91–114

    Google Scholar 

  59. Henze M (1992) Water Sci Technol 25(6):1–15

    Google Scholar 

  60. Henze M, Grady CPL, Gujer W, Marais GvR, Matsuo T (1987) Activated Sludge Model No. 1. IAWRPC Report No. 1, IAWPRC, London, UK

    Google Scholar 

  61. Sollfrank U (1988) Bedeutung organischer Fraktionen in kommunalem Abwasser im Hinblinck auf die mathematische Modellirung von Belebtschlammsystemen. Dissertation No. 8765, ETH, Zurich, Switzerland

    Google Scholar 

  62. Lesouef A, Payraudeau M, Rogalla F, Kleiber B (1992) Water Sci Technol 25(6):105–123

    Google Scholar 

  63. Spanjers H, Vanrolleghem P (1995) Water Sci Technol 43(1):181–190

    Google Scholar 

  64. Mino T, San Pedro DC, Matsuo T (1995) Water Sci Technol 31(2):95–103

    Google Scholar 

  65. Ziglio G, Andreottola G, Foladori P, Ragazzi M (2002) Water Sci Technol 43(11):119–126

    Google Scholar 

  66. Copp JB, Spanjers H, Vanrolleghem PA (eds) (2002) Respirometry in control of activated sludge process: benchmarking control strategies. IWA Publishing, London, UK

    Google Scholar 

  67. Spanjers H, Vanrolleghem PA, Olsson G, Dold PL (eds) (1998) Respirometry in control of activated sludge process. IWA Publishing, London, UK

    Google Scholar 

  68. Günder B, Krauth K-H (1999) Water Sci Technol 40(4–5):311–320

    Google Scholar 

  69. Cornel P, Wagner M, Krause S (2001) Proceedings of 2nd IWA Worldwide Conference, October, Berlin, Germany

    Google Scholar 

  70. Huang X, Gui P, Qian P (2001) Process Biochem 36(3):1001–1006

    Article  Google Scholar 

  71. Fan XJ, Urbain V, Qian Y, Manem J (1996) Water Sci Technol 34(1–2):129–136

    Google Scholar 

  72. Ghyoot W, Verstraete W (1999) Water Res 34(1):205–215

    Article  Google Scholar 

  73. Brindle K, Stephenson T (1996) Biotechnol Bioeng 49:601–610

    Article  Google Scholar 

  74. Brockmann M, Seyfried CF (1996) Water Sci Technol 34(9):205–213

    Google Scholar 

  75. Rosenberger S, Witzig R, Manz W, Szewzyk U, Kraume M (2000) Water Sci Technol 41(10– 11):269–277

    Google Scholar 

  76. Lee W, Kang S, Shin H (2003) J Membrane Sci 216:217–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guglielmi, G., Andreottola, G. (2010). Selection and Design of Membrane Bioreactors in Environmental Bioengineering. In: Wang, L., Ivanov, V., Tay, JH. (eds) Environmental Biotechnology. Handbook of Environmental Engineering, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-140-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-140-0_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-166-0

  • Online ISBN: 978-1-60327-140-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics