Skip to main content

Cardiac Mapping Technology

  • Chapter
  • First Online:
Handbook of Cardiac Anatomy, Physiology, and Devices
  • 5150 Accesses

Abstract

In general, the methodologies for cardiac electrical mapping entail registration of the electrical activation sequences of the heart by recording extracellular electrograms. The initial use of cardiac mapping was primarily to better understand the normal electrical excitations of the heart. However, the focus in mapping over time has shifted to the study of mechanisms and substrates underlying various arrhythmias; these techniques have been employed to aid in the guidance of curative surgical and/or catheter ablation procedures. More recently, the advent and continued development of high-resolution mapping technologies have considerably enhanced our understanding of rapid, complex, and/or transient arrhythmias that typically cannot be sufficiently characterized with more conventional methodologies. For example, the ability to visualize endocardial structures during electrophysiology procedures has greatly advanced the understanding of complex cardiac arrhythmias in relation to their underlying anatomy. In addition, such technologies provide powerful tools in the subsequent treatment of cardiac patients, particularly with the promise of accurately pinpointing the source of arrhythmias and thereby providing possible curative treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tawara S. Das Reizleitungssystem des Säugetierherzens. Eine Anatomisch-Histologische Studie Über das Atrioventrikularbündel und die Purkinjeschen Fäden, 1906.

    Google Scholar 

  2. Mayer AG. Rhythmical pulsation in scyphomedusae. Carnegie Institute of Washington, Washington, DC, 1906.

    Book  Google Scholar 

  3. Mayer AG. Rhythmical pulsation in scyphomedusae. In: II. Papers from the Marine Biological Laboratory at Tortugas. Washington: Carnegie Institution, 1908:115–31.

    Google Scholar 

  4. Mines GR. On dynamic equilibrium in the heart. J Physiol (Lond) 1916;46:349–82.

    Google Scholar 

  5. Lewis T, Rothschild MA. The excitatory process in the dog's heart, II: The ventricles. Phil Trans R Soc Lond B Biol Sci 1915;206:181–266.

    Article  Google Scholar 

  6. Lewis T, Feil S, Stroud WD. Observations upon flutter and fibrillation. II. The nature of auricular flutter. Heart 1920;7:191–346.

    Google Scholar 

  7. Barker PS, McLeod AG, Alexander J. The excitatory process observed in the exposed human heart. Am Heart J 1930;5:720–42.

    Article  Google Scholar 

  8. Taccardi B. Distribution of heart potentials on dog’s thoracic surface. Circ Res 1962;11:862–89.

    PubMed  CAS  Google Scholar 

  9. Jackman WM, Wang XZ, Friday KJ, et al. Catheter ablation of accessory atrioventricular pathways (Wolff- Parkinson-White syndrome) by radiofrequency current. N Engl J Med 1991;324:1605–11.

    Article  PubMed  CAS  Google Scholar 

  10. Gasparini M, Coltorti F, Mantica M, Galimberti P, Ceriotti C, Beatty G. Noncontact system-guided simplified right atrial linear lesions using radiofrequency transcatheter ablation for treatment of refractory atrial fibrillation. Pacing Clin Electrophysiol 2000;23:1843–47.

    Article  PubMed  CAS  Google Scholar 

  11. Schmitt H, Weber S, Tillmanns H, Waldecker B. Diagnosis and ablation of atrial flutter using a high resolution, noncontact mapping system. Pacing Clin Electrophysiol 2000;23:2057–64.

    Article  PubMed  CAS  Google Scholar 

  12. Schilling RJ, Davies DW, Peters NS. Characteristics of sinus rhythm electrograms at sites of ablation of ventricular tachycardia relative to all other sites: A noncontact mapping study of the entire left ventricle. J Cardiovasc Electrophysiol 1998;9:921–33.

    Article  PubMed  CAS  Google Scholar 

  13. Sra J, Thomas JM. New techniques for mapping cardiac arrhythmias. Indian Heart J 2001;53:423–44.

    PubMed  CAS  Google Scholar 

  14. Schumacher B, Jung W, Lewalter T, Wolpert C, Luderitz B. Verification of linear lesions using a noncontact multielectrode array catheter versus conventional contact mapping techniques. J Cardiovasc Electrophysiol 1999;10:791–98.

    Article  PubMed  CAS  Google Scholar 

  15. Calkins H, Langberg J, Sousa J, et al. Radiofrequency catheter ablation of accessory atrioventricular connections in 250 patients. Abbreviated therapeutic approach to Wolff- Parkinson-White syndrome. Circulation 1992;85:1337–46.

    PubMed  CAS  Google Scholar 

  16. Wittkampf FH, Wever EF, Vos K, et al. Reduction of radiation exposure in the cardiac electrophysiology laboratory. Pacing Clin Electrophysiol 2000;23:1638–44.

    Article  PubMed  CAS  Google Scholar 

  17. He B, Wu D. Imaging and visualization of 3-D cardiac electric activity. IEEE Trans Information Tech Biomed 2001;5:181–86.

    Article  CAS  Google Scholar 

  18. Li G, He B. Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach. IEEE Trans Biomed Eng 2001;48:660–69.

    Article  PubMed  CAS  Google Scholar 

  19. He B, Li G, Zhang X. Noninvasive three-dimensional activation time imaging of ventricular excitation by means of a heart-excitation model. Phys Med Bio 2002;47:4063–78.

    Article  Google Scholar 

  20. Ben-Haim SA, Osadchy D, Schuster I. Nonfluoroscopic, in vivo navigation and mapping technology. Nat Med 1996;2:1393–95.

    Article  PubMed  CAS  Google Scholar 

  21. Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation 1997;95:1611–22.

    PubMed  CAS  Google Scholar 

  22. Shpun S, Gepstein L, Hayam G, Ben-Haim SA. Guidance of radiofrequency endocardial ablation with real-time three-dimensional magnetic navigation system. Circulation 1997;96:2016–21.

    PubMed  CAS  Google Scholar 

  23. Pappone C, Oreto G, Lamberti F, et al. Catheter ablation of paroxysmal atrial fibrillation using a 3-D mapping system. Circulation 1999;100:1203–08.

    PubMed  CAS  Google Scholar 

  24. Poty H, Saoudi N, Abdel Aziz A, Nair M, Letac B. Radiofrequency catheter ablation of type 1 atrial flutter. Prediction of late success by electrophysiological criteria. Circulation 1995;92:1389–92.

    PubMed  CAS  Google Scholar 

  25. Sra J, Bhatia A, Dhala A, et al. Electroanatomic mapping to identify breakthrough sites in recurrent typical human flutter. Pacing Clin Electrophysiol 2000;23:1479–92.

    Article  PubMed  CAS  Google Scholar 

  26. Willems S, Weiss C, Ventura R, et al. Catheter ablation of atrial flutter guided by electroanatomic mapping (CARTO): A randomized comparison to the conventional approach. J Cardiovasc Electrophysiol 2000;11:1223–30.

    Article  PubMed  CAS  Google Scholar 

  27. Shah DC, Jais P, Haissaguerre M, et al. Three-dimensional mapping of the common atrial flutter circuit in the right atrium. Circulation 1997;96:3904–12.

    PubMed  CAS  Google Scholar 

  28. Stevenson WG, Delacretaz E, Friedman PL, Ellison KE. Identification and ablation of macroreentrant ventricular tachycardia with the CARTO electroanatomical mapping system. Pacing Clin Electrophysiol 1998;21:1448–56.

    Article  PubMed  CAS  Google Scholar 

  29. Tomassoni G, Stanton M, Richey M, Leonelli FM, Beheiry S, Natale A. Epicardial mapping and radiofrequency catheter ablation of ischemic ventricular tachycardia using a three-dimensional nonfluoroscopic mapping system. J Cardiovasc Electrophysiol 1999;10:1643–48.

    Article  PubMed  CAS  Google Scholar 

  30. Kottkamp H, Hindricks G, Breithardt G, Borggrefe M. Three-dimensional electromagnetic catheter technology: electroanatomic mapping of the right atrium and ablation of ectopic atrial tachycardia. J Cardiovasc Electrophysiol 1997;8:1332–37.

    Article  PubMed  CAS  Google Scholar 

  31. Marchlinski F, Callans D, Gottlieb C, Rodriguez E, Coyne R, Kleinman D. Magnetic electroanatomical mapping for ablation of focal atrial tachycardias. Pacing Clin Electrophysiol 1998;21:1621–35.

    Article  PubMed  CAS  Google Scholar 

  32. Varanasi S, Dhala A, Blanck Z, Deshpande S, Akhtar M, Sra J. Electroanatomic mapping for radiofrequency ablation of cardiac arrhythmias. J Cardiovasc Electrophysiol 1999;10:538–44.

    Article  PubMed  CAS  Google Scholar 

  33. de Groot N, Bootsma M, van der Velde ET, Schalij MJ. Three-dimensional catheter positioning during radiofrequency ablation in patients: First application of a real-time position management system. J Cardiovasc Electrophysiol 2000;11:1183–92.

    Article  PubMed  Google Scholar 

  34. Schreieck J, Ndrepepa G, Zrenner B, et al. Radiofrequency ablation of cardiac arrhythmias using a three- dimensional real-time position management and mapping system. Pacing Clin Electrophysiol 2002;25:1699–707.

    Article  PubMed  Google Scholar 

  35. Soejima K, Delacretaz E, Suzuki M, et al. Saline-cooled versus standard radiofrequency catheter ablation for infarct-related ventricular tachycardias. Circulation 2001;103:1858–62.

    PubMed  CAS  Google Scholar 

  36. Wittkampf FH, Wever EF, Derksen R, et al. LocaLisa: New technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation 1999;99:1312–17.

    PubMed  CAS  Google Scholar 

  37. Avitall B, Helms RW, Kotov AV, Sieben W, Anderson J. The use of temperature versus local depolarization amplitude to monitor atrial lesion maturation during the creation of linear lesions in both atria. Circulation 1996;94:I-558.

    Google Scholar 

  38. Borggrefe M, Budde T, Podczeck A, Breithardt G. High frequency alternating current ablation of an accessory pathway in humans. J Am Coll Cardiol 1987;10:576–82.

    Article  PubMed  CAS  Google Scholar 

  39. Jenkins KJ, Walsh EP, Colan SD, Bergau DM, Saul JP, Lock JE. Multipolar endocardial mapping of the right atrium during cardiac catheterization: Description of a new technique. J Am Coll Cardiol 1993;22:1105–10.

    Article  PubMed  CAS  Google Scholar 

  40. Eldar M, Ohad DG, Goldberger JJ, et al. Transcutaneous multielectrode basket catheter for endocardial mapping and ablation of ventricular tachycardia in the pig. Circulation 1997;96:2430–37.

    PubMed  CAS  Google Scholar 

  41. Triedman JK, Jenkins KJ, Colan SD, Van Praagh R, Lock JE, Walsh EP. Multipolar endocardial mapping of the right heart using a basket catheter: Acute and chronic animal studies. Pacing Clin Electrophysiol 1997;20:51–59.

    Article  PubMed  CAS  Google Scholar 

  42. Schalij MJ, van Rugge FP, Siezenga M, van der Velde ET. Endocardial activation mapping of ventricular tachycardia in patients: First application of a 32-site bipolar mapping catheter electrode. Circulation 1998;98:2168–79.

    PubMed  CAS  Google Scholar 

  43. Triedman JK, Jenkins KJ, Colan SD, Saul JP, Walsh EP. Intra-atrial reentrant tachycardia after palliation of congenital heart disease: Characterization of multiple macroreentrant circuits using fluoroscopically based three-dimensional endocardial mapping. J Cardiovasc Electrophysiol 1997;8:259–70.

    Article  PubMed  CAS  Google Scholar 

  44. Greenspon AJ, Hsu SS, Datorre S. Successful radiofrequency catheter ablation of sustained ventricular tachycardia postmyocardial infarction in man guided by a multielectrode "basket" catheter. J Cardiovasc Electrophysiol 1997;8:565–70.

    Article  PubMed  CAS  Google Scholar 

  45. Schmitt C, Zrenner B, Schneider M, et al. Clinical experience with a novel multielectrode basket catheter in right atrial tachycardias. Circulation 1999;99:2414–22.

    PubMed  CAS  Google Scholar 

  46. Schilling RJ, Peters NS, Davies DW. Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter: Comparison of contact and reconstructed electrograms during sinus rhythm. Circulation 1998;98:887–98.

    PubMed  CAS  Google Scholar 

  47. Schilling RJ, Peters NS, Davies DW. Feasibility of a noncontact catheter for endocardial mapping of human ventricular tachycardia. Circulation 1999;99:2543–52.

    PubMed  CAS  Google Scholar 

  48. Taccardi B, Arisi G, Macchi E, Baruffi S, Spaggiari S. A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle. Circulation 1987;75:272–81.

    Article  PubMed  CAS  Google Scholar 

  49. Khoury DS, Taccardi B, Lux RL, Ershler PR, Rudy Y. Reconstruction of endocardial potentials and activation sequences from intracavitary probe measurements. Localization of pacing sites and effects of myocardial structure. Circulation 1995;91:845–63.

    PubMed  CAS  Google Scholar 

  50. Tuzcu V. A nonfluoroscopic approach for electrophysiology and catheter ablation procedures using a three-dimensional navigation system. Pacing Clin Electrophysiol 2007;30:519–25.

    Article  PubMed  Google Scholar 

  51. Novak P, Macle L, Thibault B, Guerra P. Enhanced left atrial mapping using digitally synchronized NavX three-dimensional nonfluoroscopic mapping and high-resolution computed tomographic imaging for catheter ablation of atrial fibrillation. Heart Rhythm 2004;4:521–22.

    Article  Google Scholar 

  52. Schilling RJ, Kadish AH, Peters NS, Goldberger J, Davies DW. Endocardial mapping of atrial fibrillation in the human right atrium using a noncontact catheter. Eur Heart J 2000;21:550–64.

    Article  PubMed  CAS  Google Scholar 

  53. Schneider MA, Ndrepepa G, Zrenner B, et al. Noncontact mapping-guided catheter ablation of atrial fibrillation associated with left atrial ectopy. J Cardiovasc Electrophysiol 2000;11:475–79.

    Article  PubMed  CAS  Google Scholar 

  54. Liu TY, Tai CT, Chen SA. Treatment of atrial fibrillation by catheter ablation of conduction gaps in the crista terminalis and cavotricuspid isthmus of the right atrium. J Cardiovasc Electrophysiol 2002;13:1044–46.

    Article  PubMed  Google Scholar 

  55. Strickberger SA, Knight BP, Michaud GF, Pelosi F, Morady F. Mapping and ablation of ventricular tachycardia guided by virtual electrograms using a noncontact, computerized mapping system. J Am Coll Cardiol 2000;35:414–21.

    Article  PubMed  CAS  Google Scholar 

  56. Kadish A, Hauck J, Pederson B, Beatty G, Gornick C. Mapping of atrial activation with a noncontact, multielectrode catheter in dogs. Circulation 1999;99:1906–13.

    PubMed  CAS  Google Scholar 

  57. Barr RC, Spach MS. Inverse calculation of QRS-T epicardial potentials from normal and ectopic beats in the dog. Circ Res 1978;42:661–75.

    PubMed  CAS  Google Scholar 

  58. Ramanathan C, Raja NG, Jia P, Ryu K, Rudy Y. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med 2004;10:422–28.

    Article  PubMed  CAS  Google Scholar 

  59. Tilg B, Fischer G, Modre R, et al. Model-based imaging of cardiac electrical excitation in humans. IEEE Trans Med Imag 2002;21:1031–39.

    Article  Google Scholar 

  60. He B, Li G, Zhang X. Noninvasive imaging of ventricular transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Trans Biomed Eng 2003;50:1190–202.

    Article  PubMed  Google Scholar 

  61. Liu Z, Liu C, He B. Noninvasive reconstruction of three-dimensional ventricular activation sequence from the inverse solution of distributed equivalent current density. IEEE Trans Med Imag 2006;25:1307–18.

    Article  Google Scholar 

  62. Zhang X, Ramachandra I, Liu Z, Muneer B, Pogwizd SM, He B. Noninvasive three-dimensional electrocardiographic imaging of ventricular activation sequence. Am J Physiol Heart Circ Physiol 2005;289:H2724–2732.

    Article  PubMed  CAS  Google Scholar 

  63. Liu C, Skadsberg N, Ahlberg S, Swingen C, Iaizzo P, He B. Estimation of global ventricular activation sequences by noninvasive 3-dimensional electrical imaging: Validation studies in a swine model during pacing. J Cardiovasc Electrophysiol 2008;19:535–40.

    Article  PubMed  Google Scholar 

  64. Lesh MD, Kalman JM, Karch MR. Use of intracardiac echocardiography during electrophysiologic evaluation and therapy of atrial arrhythmias. J Cardiovasc Electrophysiol 1998;9:S40–47.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Skadsberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Skadsberg, N.D., He, B., Laske, T.G., Iaizzo, P.A. (2009). Cardiac Mapping Technology. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-60327-372-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-372-5_29

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-371-8

  • Online ISBN: 978-1-60327-372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics