Skip to main content

The Endoplasmic Reticulum Pathway

  • Chapter
  • First Online:
Essentials of Apoptosis

Abstract

Virtually all organisms adapt to stress in order to prolong their survival. At the subcellular level, the endoplasmic reticulum (ER) responds to stress by inducing ER-specific signaling pathways to reestablish homeostasis between protein synthesis and processing, a mechanism called the unfolded protein response (UPR). However, when cells endure a persistent irreversible state of ER stress, they undergo apoptosis. Apoptosis initiated at the ER is distinct from mitochondrial or death receptor-mediated apoptosis but may involve or require cross-talk from intrinsic or extrinsic pathways. Two functions of the ER are to facilitate the maturation of newly synthesized proteins and to maintain stores of intracellular calcium. Therefore, apoptosis induced by ER stress is frequently characterized by perturbations in protein processing and transport and/or a loss of calcium homeostasis. Additionally, because the ER and mitochondria reside in close proximity to one another, pro- and antiapoptotic proteins, such as the Bcl-2 family members, localize to the ER to regulate apoptosis in response to stress. This chapter summarizes the key pathways associated with cell survival and apoptotic cell death in the context of ER stress and aberrant calcium signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rutkowski DT, Kaufman RJ. A trip to the ER: Coping with stress. Trends Cell Biol 2004;14(1):20–8.

    Article  PubMed  CAS  Google Scholar 

  2. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest 2002;110(10):1389–98.

    PubMed  CAS  Google Scholar 

  3. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007;8(7):519–29.

    Article  PubMed  CAS  Google Scholar 

  4. Kim YK, Kim KS, Lee AS. Regulation of the glucose-regulated protein genes by beta-mercaptoethanol requires de novo protein synthesis and correlates with inhibition of protein glycosylation. J Cell Physiol 1987;133(3):553–9.

    Article  PubMed  CAS  Google Scholar 

  5. Booth C, Koch GL. Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 1989;59(4):729–37.

    Article  PubMed  CAS  Google Scholar 

  6. Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett 2007;581(19):3641–51.

    Article  PubMed  CAS  Google Scholar 

  7. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 2006;7(9):880–5.

    Article  PubMed  CAS  Google Scholar 

  8. Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 2002;3(1):99–111.

    Article  PubMed  CAS  Google Scholar 

  9. Liu CY, Xu Z, Kaufman RJ. Structure and intermolecular interactions of the luminal dimerization domain of human IRE1alpha. J Biol Chem 2003;278(20):17680–7.

    Article  PubMed  CAS  Google Scholar 

  10. Cox JS, Shamu CE, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 1993;73(6):1197–206.

    Article  PubMed  CAS  Google Scholar 

  11. Mori K, Ma W, Gething MJ, Sambrook J. A transmembrane protein with a CDC2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 1993;74(4):743–56.

    Article  PubMed  CAS  Google Scholar 

  12. Credle JJ, Finer-Moore JS, Papa FR, Stroud RM, Walter P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci USA 2005;102(52):18773–84.

    Article  PubMed  CAS  Google Scholar 

  13. Liu CY, Wong HN, Schauerte JA, Kaufman RJ. The protein kinase/endoribonuclease IRE1alpha that signals the unfolded protein response has a luminal N-terminal ligand-independent dimerization domain. J Biol Chem 2002;277(21):18346–56.

    Article  PubMed  CAS  Google Scholar 

  14. Calfon M, Zeng H, Urano F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002;415(6867):92–6.

    Article  PubMed  CAS  Google Scholar 

  15. Cox JS, Walter P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 1996;87(3):391–404.

    Article  PubMed  CAS  Google Scholar 

  16. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001;107(7):881–91.

    Article  PubMed  CAS  Google Scholar 

  17. Lin JH, Li H, Yasumura D, et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 2007;318(5852):944–9.

    Article  PubMed  CAS  Google Scholar 

  18. Ye J, Rawson RB, Komuro R, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 2000;6(6):1355–64.

    Article  PubMed  CAS  Google Scholar 

  19. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999;10(11):3787–99.

    PubMed  CAS  Google Scholar 

  20. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K. Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 2002;366(Pt 2):585–94.

    Article  PubMed  CAS  Google Scholar 

  21. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 1992;6(3):439–53.

    Article  PubMed  CAS  Google Scholar 

  22. Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 2002;318(5):1351–65.

    Article  PubMed  CAS  Google Scholar 

  23. Patil C, Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus: The unfolded protein response in yeast and mammals. Curr Opin Cell Biol 2001;13(3):349–55.

    Article  PubMed  CAS  Google Scholar 

  24. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999;397(6716):271–4.

    Article  PubMed  CAS  Google Scholar 

  25. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. PERK is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000;5(5):897–904.

    Article  PubMed  CAS  Google Scholar 

  26. Jiang HY, Wek SA, McGrath BC, et al. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 2003;23(16):5651–63.

    Article  PubMed  CAS  Google Scholar 

  27. Deng J, Lu PD, Zhang Y, et al. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 2004;24(23):10161–8.

    Article  PubMed  CAS  Google Scholar 

  28. Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000;6(5):1099–108.

    Article  PubMed  CAS  Google Scholar 

  29. Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003;11(3):619–33.

    Article  PubMed  CAS  Google Scholar 

  30. Lee AS. GRP78 induction in cancer: Therapeutic and prognostic implications. Cancer Res 2007;67(8):3496–9.

    Article  PubMed  CAS  Google Scholar 

  31. Hebert DN, Molinari M. In and out of the ER: Protein folding, quality control, degradation, and related human diseases. Physiol Rev 2007;87(4):1377–408.

    Google Scholar 

  32. Yoshida H. ER stress and diseases. FEBS J 2007;274(3):630–58.

    Article  PubMed  CAS  Google Scholar 

  33. Lee AS. The glucose-regulated proteins: Stress induction and clinical applications. Trends Biochem Sci 2001;26(8):504–10.

    Article  PubMed  CAS  Google Scholar 

  34. Li Z, Srivastava PK. Tumor rejection antigen gp96/grp94 is an ATPase: Implications for protein folding and antigen presentation. EMBO J 1993;12(8):3143–51.

    PubMed  CAS  Google Scholar 

  35. Ruddock LW, Molinari M. N-glycan processing in ER quality control. J Cell Sci 2006;119(Pt 21):4373–80.

    Article  PubMed  CAS  Google Scholar 

  36. Deprez P, Gautschi M, Helenius A. More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle. Mol Cell 2005;19(2):183–95.

    Article  PubMed  CAS  Google Scholar 

  37. Ahner A, Brodsky JL. Checkpoints in ER-associated degradation: Excuse me, which way to the proteasome? Trends Cell Biol 2004;14(9):474–8.

    Article  PubMed  CAS  Google Scholar 

  38. Nakatsukasa K, Huyer G, Michaelis S, Brodsky JL. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 2008;132(1):101–12.

    Article  PubMed  CAS  Google Scholar 

  39. Nishikawa S, Brodsky JL, Nakatsukasa K. Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J Biochem 2005;137(5):551–5.

    Article  PubMed  CAS  Google Scholar 

  40. Fewell SW, Travers KJ, Weissman JS, Brodsky JL. The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 2001;35:149–91.

    Article  PubMed  CAS  Google Scholar 

  41. Olivari S, Galli C, Alanen H, Ruddock L, Molinari M. A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. J Biol Chem 2005;280(4):2424–8.

    Article  PubMed  CAS  Google Scholar 

  42. Hoyer-Hansen M, Jaattela M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 2007;14(9):1576–82.

    Article  PubMed  CAS  Google Scholar 

  43. Levine B, Klionsky DJ. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev Cell 2004;6(4):463–77.

    Article  PubMed  CAS  Google Scholar 

  44. Mizushima N. Autophagy: Process and function. Genes Dev 2007;21(22):2861–73.

    Article  PubMed  CAS  Google Scholar 

  45. Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer 2005;5(11):886–97.

    Article  PubMed  CAS  Google Scholar 

  46. Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006;26(24):9220–31.

    Article  PubMed  CAS  Google Scholar 

  47. Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. J Biol Chem 2006;281(40):30299–304.

    Article  PubMed  CAS  Google Scholar 

  48. Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 2006;4(12):e423.

    Article  PubMed  CAS  Google Scholar 

  49. Xie Z, Klionsky DJ. Autophagosome formation: Core machinery and adaptations. Nat Cell Biol 2007;9(10):1102–9.

    Article  PubMed  CAS  Google Scholar 

  50. Edinger AL, Thompson CB. Defective autophagy leads to cancer. Cancer Cell 2003;4(6):422–4.

    Article  PubMed  CAS  Google Scholar 

  51. Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 2007;14(2):230–9.

    Article  PubMed  CAS  Google Scholar 

  52. Fujita E, Kouroku Y, Isoai A, et al. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: Ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum Mol Genet 2007;16(6):618–29.

    Article  PubMed  CAS  Google Scholar 

  53. Nakanishi K, Sudo T, Morishima N. Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol 2005;169(4):555–60.

    Article  PubMed  CAS  Google Scholar 

  54. Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 1998;17(19):5708–17.

    Article  PubMed  CAS  Google Scholar 

  55. Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998;12(7):982–95.

    Article  PubMed  CAS  Google Scholar 

  56. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 2001;21(4):1249–59.

    Article  PubMed  CAS  Google Scholar 

  57. Marciniak SJ, Yun CY, Oyadomari S, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 2004;18(24):3066–77.

    Article  PubMed  CAS  Google Scholar 

  58. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000;287(5453):664–6.

    Article  PubMed  CAS  Google Scholar 

  59. Rincon M, Whitmarsh A, Yang DD, et al. The JNK pathway regulates the in vivo deletion of immature CD4(+)CD8(+) thymocytes. J Exp Med 1998;188(10):1817–30.

    Article  PubMed  CAS  Google Scholar 

  60. Yang DD, Kuan CY, Whitmarsh AJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 1997;389(6653):865–70.

    Article  PubMed  CAS  Google Scholar 

  61. Aoki H, Kang PM, Hampe J, et al. Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 2002;277(12):10244–50.

    Article  PubMed  CAS  Google Scholar 

  62. Nishitoh H, Saitoh M, Mochida Y, et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 1998;2(3):389–95.

    Article  PubMed  CAS  Google Scholar 

  63. Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 2002;16(11):1345–55.

    Article  PubMed  CAS  Google Scholar 

  64. Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 2001;276(17):13935–40.

    PubMed  CAS  Google Scholar 

  65. Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: The story so far. Ann NY Acad Sci 2003;1010:186–94.

    Article  PubMed  CAS  Google Scholar 

  66. Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000;403(6765):98–103.

    Article  PubMed  CAS  Google Scholar 

  67. Rao RV, Hermel E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 2001;276(36):33869–74.

    CAS  Google Scholar 

  68. Rao RV, Castro-Obregon S, Frankowski H, et al. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 2002;277(24):21836–42.

    Article  PubMed  CAS  Google Scholar 

  69. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 2002;277(37):34287–94.

    Article  PubMed  CAS  Google Scholar 

  70. Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 2000;150(4):887–94.

    Article  PubMed  CAS  Google Scholar 

  71. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 2001;292(5517):727–30.

    Article  PubMed  CAS  Google Scholar 

  72. Zong WX, Li C, Hatzivassiliou G, et al. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 2003;162(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  73. Hacki J, Egger L, Monney L, et al. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 2000;19(19):2286–95.

    Article  PubMed  CAS  Google Scholar 

  74. Boya P, Cohen I, Zamzami N, Vieira HL, Kroemer G. Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ 2002;9(4):465–7.

    Article  PubMed  CAS  Google Scholar 

  75. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: The calcium-apoptosis link. Nat Rev Mol Cell Biol 2003;4(7):552–65.

    Article  PubMed  CAS  Google Scholar 

  76. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003;4(7):517–29.

    Article  PubMed  CAS  Google Scholar 

  77. Lewis RS. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 2001;19:497–521.

    Article  PubMed  CAS  Google Scholar 

  78. Guse AH, da Silva CP, Berg I, et al. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 1999;398(6722):70–3.

    Article  PubMed  CAS  Google Scholar 

  79. Hogquist KA. Signal strength in thymic selection and lineage commitment. Curr Opin Immunol 2001;13(2):225–31.

    Article  PubMed  CAS  Google Scholar 

  80. McConkey DJ, Hartzell P, Amador-Perez JF, Orrenius S, Jondal M. Calcium-dependent killing of immature thymocytes by stimulation via the CD3/T cell receptor complex. J Immunol 1989;143(6):1801–6.

    PubMed  CAS  Google Scholar 

  81. Mariathasan S, Bachmann MF, Bouchard D, Ohteki T, Ohashi PS. Degree of TCR internalization and Ca2+ flux correlates with thymocyte selection. J Immunol 1998;161(11):6030–7.

    PubMed  CAS  Google Scholar 

  82. Ashton-Rickardt PG, Bandeira A, Delaney JR, et al. Evidence for a differential avidity model of T cell selection in the thymus. Cell 1994;76(4):651–63.

    Article  PubMed  CAS  Google Scholar 

  83. McCormack JE, Kappler J, Marrack P. Stimulation with specific antigen can block superantigen-mediated deletion of T cells in vivo. Proc Natl Acad Sci USA 1994;91(6):2086–90.

    Article  PubMed  CAS  Google Scholar 

  84. Davis MC, Distelhorst CW. Live free or die: An immature T cell decision encoded in distinct Bcl-2 sensitive and insensitive Ca2+ signals. Cell Cycle 2006;5(11):1171–4.

    Article  PubMed  CAS  Google Scholar 

  85. Zhong F, Davis MC, McColl KS, Distelhorst CW. Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol 2006;172(1):127–37.

    Article  PubMed  CAS  Google Scholar 

  86. Kaiser N, Edelman IS. Calcium dependence of glucocorticoid-induced lymphocytolysis. Proc Natl Acad Sci USA 1977;74(2):638–42.

    Article  PubMed  CAS  Google Scholar 

  87. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980;284(5756):555–6.

    Article  PubMed  CAS  Google Scholar 

  88. Cohen JJ, Duke RC. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 1984;132(1):38–42.

    PubMed  CAS  Google Scholar 

  89. Lam M, Dubyak G, Distelhorst CW. Effect of glucocorticosteroid treatment on intracellular calcium homeostasis in mouse lymphoma cells. Mol Endocrinol 1993;7(5):686–93.

    Article  PubMed  CAS  Google Scholar 

  90. Bian X, Hughes FM, Jr., Huang Y, Cidlowski JA, Putney JW, Jr. Roles of cytoplasmic Ca2+ and intracellular Ca2+ stores in induction and suppression of apoptosis in S49 cells. Am J Physiol 1997;272(4 Pt 1):C1241–9.

    PubMed  CAS  Google Scholar 

  91. Khan AA, Soloski MJ, Sharp AH, et al. Lymphocyte apoptosis: Mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science 1996;273(5274):503–7.

    Article  PubMed  CAS  Google Scholar 

  92. Jayaraman T, Marks AR. T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 1997;17(6):3005–12.

    PubMed  CAS  Google Scholar 

  93. Davis MC, McColl KS, Zhong F, Wang Z, Malone MH, Distelhorst CW. Dexamethasone-induced inositol 1,4,5-trisphosphate receptor elevation in murine lymphoma cells is not required for dexamethasone-mediated calcium elevation and apoptosis. J Biol Chem 2008;283(16):10357–65.

    Google Scholar 

  94. Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: Significance for the molecular mechanism of Bcl-2 action. EMBO J 2001;20(11):2690–701.

    Article  PubMed  CAS  Google Scholar 

  95. Rong Y, Distelhorst CW. Bcl-2 protein family members: Versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 2008;70:73–91.

    Google Scholar 

  96. Joseph SK, Hajnoczky G. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 2007;12(5):951–68.

    Article  PubMed  CAS  Google Scholar 

  97. Pacher P, Hajnoczky G. Propagation of the apoptotic signal by mitochondrial waves. EMBO J 2001;20(15):4107–21.

    Article  PubMed  CAS  Google Scholar 

  98. Walter L, Hajnoczky G. Mitochondria and endoplasmic reticulum: The lethal interorganelle cross-talk. J Bioenerg Biomembr 2005;37(3):191–206.

    Article  PubMed  CAS  Google Scholar 

  99. Hanson CJ, Bootman MD, Roderick HL. Cell signalling: IP3 receptors channel calcium into cell death. Curr Biol 2004;14(21):R933–5.

    Article  PubMed  CAS  Google Scholar 

  100. Rizzuto R, Pinton P, Ferrari D, et al. Calcium and apoptosis: Facts and hypotheses. Oncogene 2003;22(53):8619–27.

    Article  PubMed  CAS  Google Scholar 

  101. Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H. Uncoupled IP3 receptor can function as a Ca2+-leak channel: Cell biological and pathological consequences. Biol Cell 2006;98(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  102. Jacobson J, Duchen MR. Interplay between mitochondria and cellular calcium signalling. Mol Cell Biochem 2004;256–257(1–2):209–18.

    Article  PubMed  Google Scholar 

  103. Hajnoczky G, Csordas G, Das S, et al. Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 2006;40(5–6):553–60.

    Article  PubMed  CAS  Google Scholar 

  104. Szalai G, Krishnamurthy R, Hajnoczky G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J 1999;18(22):6349–61.

    Article  PubMed  CAS  Google Scholar 

  105. Hirota J, Furuichi T, Mikoshiba K. Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J Biol Chem 1999;274(48):34433–7.

    Article  PubMed  CAS  Google Scholar 

  106. Assefa Z, Bultynck G, Szlufcik K, et al. Caspase-3-induced truncation of type 1 inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis. J Biol Chem 2004;279(41):43227–36.

    Article  PubMed  CAS  Google Scholar 

  107. Verbert L, Lee B, Kocks SL, et al. Caspase-3-truncated type 1 inositol 1,4,5-trisphosphate receptor enhances intracellular Ca2+ leak and disturbs Ca2+ signalling. Biol Cell 2008;100(1):39–49.

    Article  PubMed  CAS  Google Scholar 

  108. Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 2003;5(12):1051–61.

    Article  PubMed  CAS  Google Scholar 

  109. Sedlak TW, Snyder SH. Messenger molecules and cell death: Therapeutic implications. JAMA 2006;295(1):81–9.

    Article  PubMed  CAS  Google Scholar 

  110. Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL, Distelhorst CW. Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Natl Acad Sci USA 1994;91(14):6569–73.

    Article  PubMed  CAS  Google Scholar 

  111. Kaufmann T, Schlipf S, Sanz J, Neubert K, Stein R, Borner C. Characterization of the signal that directs Bcl-xL, but not Bcl-2, to the mitochondrial outer membrane. J Cell Biol 2003;160(1):53–64.

    Article  PubMed  CAS  Google Scholar 

  112. Cory S, Adams JM. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer 2002;2(9):647–56.

    Article  PubMed  CAS  Google Scholar 

  113. Annis MG, Zamzami N, Zhu W, et al. Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution of cytochrome c is a late event. Oncogene 2001;20(16):1939–52.

    Article  PubMed  CAS  Google Scholar 

  114. Baffy G, Miyashita T, Williamson JR, Reed JC. Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J Biol Chem 1993;268(9):6511–9.

    PubMed  CAS  Google Scholar 

  115. Minagawa N, Kruglov EA, Dranoff JA, Robert ME, Gores GJ, Nathanson MH. The anti-apoptotic protein Mcl-1 inhibits mitochondrial Ca2+ signals. J Biol Chem 2005;280(39):33637–44.

    Article  PubMed  CAS  Google Scholar 

  116. Kruman, II, Mattson MP. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J Neurochem 1999;72(2):529–40.

    Google Scholar 

  117. An J, Chen Y, Huang Z. Critical upstream signals of cytochrome C release induced by a novel Bcl-2 inhibitor. J Biol Chem 2004;279(18):19133–40.

    Article  PubMed  CAS  Google Scholar 

  118. Chen R, Valencia I, Zhong F, et al. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 2004;166(2):193–203.

    Article  PubMed  CAS  Google Scholar 

  119. Xu L, Kong D, Zhu L, Zhu W, Andrews DW, Kuo TH. Suppression of IP3-mediated calcium release and apoptosis by Bcl-2 involves the participation of protein phosphatase 1. Mol Cell Biochem 2007;295(1–2):153–65.

    Article  PubMed  CAS  Google Scholar 

  120. Basset O, Boittin FX, Cognard C, Constantin B, Ruegg UT. Bcl-2 overexpression prevents calcium overload and subsequent apoptosis in dystrophic myotubes. Biochem J 2006;395(2):267–76.

    Article  PubMed  CAS  Google Scholar 

  121. White C, Li C, Yang J, et al. The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat Cell Biol 2005;7(10):1021–8.

    Article  PubMed  CAS  Google Scholar 

  122. Li C, Wang X, Vais H, Thompson CB, Foskett JK, White C. Apoptosis regulation by Bcl-xL modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proc Natl Acad Sci USA 2007;104(30):12565–70.

    Article  PubMed  CAS  Google Scholar 

  123. Erin N, Bronson SK, Billingsley ML. Calcium-dependent interaction of calcineurin with Bcl-2 in neuronal tissue. Neuroscience 2003;117(3):541–55.

    Article  PubMed  CAS  Google Scholar 

  124. Cameron AM, Steiner JP, Roskams AJ, Ali SM, Ronnett GV, Snyder SH. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 1995;83(3):463–72.

    Article  PubMed  CAS  Google Scholar 

  125. Shibasaki F, Kondo E, Akagi T, McKeon F. Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bcl-2. Nature 1997;386(6626):728–31.

    Article  PubMed  CAS  Google Scholar 

  126. Erin N, Lehman RA, Boyer PJ, Billingsley ML. In vitro hypoxia and excitotoxicity in human brain induce calcineurin-Bcl-2 interactions. Neuroscience 2003;117(3):557–65.

    Article  PubMed  CAS  Google Scholar 

  127. Erin N, Billingsley ML. Domoic acid enhances Bcl-2-calcineurin-inositol-1,4,5-trisphosphate receptor interactions and delayed neuronal death in rat brain slices. Brain Res 2004;1014(1–2):45–52.

    Article  PubMed  CAS  Google Scholar 

  128. DeSouza N, Reiken S, Ondrias K, Yang YM, Matkovich S, Marks AR. Protein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex. J Biol Chem 2002;277(42):39397–400.

    Article  PubMed  CAS  Google Scholar 

  129. Tong G, Shepherd D, Jahr CE. Synaptic desensitization of NMDA receptors by calcineurin. Science 1995;267(5203):1510–2.

    Article  PubMed  CAS  Google Scholar 

  130. Foyouzi-Youssefi R, Arnaudeau S, Borner C, et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci USA 2000;97(11):5723–8.

    Article  PubMed  CAS  Google Scholar 

  131. Pinton P, Ferrari D, Magalhaes P, et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 2000;148(5):857–62.

    Article  PubMed  CAS  Google Scholar 

  132. Oakes SA, Scorrano L, Opferman JT, et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 2005;102(1):105–10.

    Article  PubMed  CAS  Google Scholar 

  133. Vanden Abeele F, Skryma R, Shuba Y, et al. Bcl-2-dependent modulation of Ca2+ homeostasis and store-operated channels in prostate cancer cells. Cancer Cell 2002;1(2):169–79.

    Article  PubMed  CAS  Google Scholar 

  134. Dremina ES, Sharov VS, Kumar K, Zaidi A, Michaelis EK, Schoneich C. Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem J 2004;383(Pt 2):361–70.

    PubMed  CAS  Google Scholar 

  135. Dremina ES, Sharov VS, Schoneich C. Displacement of SERCA from SR lipid caveolae-related domains by Bcl-2: A possible mechanism for SERCA inactivation. Biochemistry 2006;45(1):175–84.

    Article  PubMed  CAS  Google Scholar 

  136. Kuo TH, Kim HR, Zhu L, Yu Y, Lin HM, Tsang W. Modulation of endoplasmic reticulum calcium pump by Bcl-2. Oncogene 1998;17(15):1903–10.

    Article  PubMed  CAS  Google Scholar 

  137. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science 2003;300(5616):135–9.

    Article  PubMed  CAS  Google Scholar 

  138. Nutt LK, Chandra J, Pataer A, et al. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 2002;277(23):20301–8.

    Article  PubMed  CAS  Google Scholar 

  139. Nutt LK, Pataer A, Pahler J, et al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 2002;277(11):9219–25.

    Article  PubMed  CAS  Google Scholar 

  140. Cheng EH, Wei MC, Weiler S, et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001;8(3):705–11.

    Article  PubMed  CAS  Google Scholar 

  141. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002;2(3):183–92.

    Article  PubMed  CAS  Google Scholar 

  142. Willis SN, Fletcher JI, Kaufmann T, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 2007;315(5813):856–9.

    Article  PubMed  CAS  Google Scholar 

  143. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007;26(9):1324–37.

    Article  PubMed  CAS  Google Scholar 

  144. O'Connor L, Strasser A, O'Reilly LA, et al. Bim: A novel member of the Bcl-2 family that promotes apoptosis. EMBO J 1998;17(2):384–95.

    Article  PubMed  Google Scholar 

  145. Morishima N, Nakanishi K, Tsuchiya K, Shibata T, Seiwa E. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J Biol Chem 2004;279(48):50375–81.

    Article  PubMed  CAS  Google Scholar 

  146. Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 2003;100(5):2432–7.

    Article  PubMed  CAS  Google Scholar 

  147. Leung KT, Li K, Sai-Ming Sun S, Sheung Chan PK, Eng-Choon Ooi V, Chi-Ming Chiu L. Activation of the JNK pathway promotes phosphorylation and degradation of BimEL, a novel mechanism of chemoresistance in T-cell acute lymphoblastic leukemia. Carcinogenesis 2008;29(3):544–51.

    Google Scholar 

  148. Puthalakath H, O'Reilly LA, Gunn P, et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 2007;129(7):1337–49.

    Article  PubMed  CAS  Google Scholar 

  149. Han J, Sabbatini P, White E. Induction of apoptosis by human Nbk/Bik, a BH3-containing protein that interacts with E1B 19 K. Mol Cell Biol 1996;16(10):5857–64.

    PubMed  CAS  Google Scholar 

  150. Boyd JM, Gallo GJ, Elangovan B, et al. Bik, a novel death-inducing protein, shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene 1995;11(9):1921–8.

    PubMed  CAS  Google Scholar 

  151. Mathai JP, Germain M, Marcellus RC, Shore GC. Induction and endoplasmic reticulum location of BIK/NBK in response to apoptotic signaling by E1A and p53. Oncogene 2002;21(16):2534–44.

    Article  PubMed  CAS  Google Scholar 

  152. Mathai JP, Germain M, Shore GC. BH3-only BIK regulates BAX,BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J Biol Chem 2005;280(25):23829–36.

    Article  PubMed  CAS  Google Scholar 

  153. Germain M, Mathai JP, Shore GC. BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria. J Biol Chem 2002;277(20):18053–60.

    Article  PubMed  CAS  Google Scholar 

  154. Futami T, Miyagishi M, Taira K. Identification of a network involved in thapsigargin-induced apoptosis using a library of small interfering RNA expression vectors. J Biol Chem 2005;280(1):826–31.

    PubMed  CAS  Google Scholar 

  155. Li J, Lee B, Lee AS. Endoplasmic reticulum stress-induced apoptosis: Multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 2006;281(11):7260–70.

    Article  PubMed  CAS  Google Scholar 

  156. Germain M, Mathai JP, McBride HM, Shore GC. Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 2005;24(8):1546–56.

    Article  PubMed  CAS  Google Scholar 

  157. Reimertz C, Kogel D, Rami A, Chittenden T, Prehn JH. Gene expression during ER stress-induced apoptosis in neurons: Induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 2003;162(4):587–97.

    Article  PubMed  CAS  Google Scholar 

  158. Kieran D, Woods I, Villunger A, Strasser A, Prehn JH. Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice. Proc Natl Acad Sci USA 2007;104(51):20606–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark W. Distelhorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Harr, M.W., Distelhorst, C.W. (2009). The Endoplasmic Reticulum Pathway. In: Dong, Z., Yin, XM. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_7

Download citation

Publish with us

Policies and ethics