Skip to main content

Inflammation as a Target in Prostate Cancer

  • Chapter
  • First Online:
Drug Management of Prostate Cancer

Abstract

Epidemiological studies have implicated chronic infections and inflammation as major risk factors for a variety of human cancers. Emerging evidence suggests that chronic inflammation is important for the development of prostate cancer and foci of inflammation (i.e., lymphocytes and macrophages) and is extremely common in the prostate. Multiple mechanisms have been investigated in studies examining the role of inflammation in prostate cancer initiation and development. In this chapter, we review the current state of thinking on the causes of prostatic inflammation, inflammatory genes potentially involved in prostatic inflammation and carcinogenesis, and the role of inflammation in the development of prostate cancer. An understanding of the role of chronic inflammation in the development of prostate cancer will provide new therapeutic strategies to combat the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med 2000; 248(3):171–183.

    Article  PubMed  CAS  Google Scholar 

  2. Bostwick DG, de la RG, Dundore P, Corica FA, Iczkowski KA. Intraepithelial and stromal lymphocytes in the normal human prostate. Prostate 2003; 55(3):187–193.

    Article  PubMed  Google Scholar 

  3. Theyer G, Kramer G, Assmann I et al. Phenotypic characterization of infiltrating leukocytes in benign prostatic hyperplasia. Lab Invest 1992; 66(1):96–107.

    PubMed  CAS  Google Scholar 

  4. De Marzo AM, Platz EA, Sutcliffe S et al. Inflammation in prostate carcinogenesis. Nat Rev Cancer 2007; 7(4):256–269.

    Article  PubMed  Google Scholar 

  5. Steiner G, Gessl A, Kramer G, Schollhammer A, Forster O, Marberger M. Phenotype and function of peripheral and prostatic lymphocytes in patients with benign prostatic hyperplasia. J Urol 1994; 151(2):480–484.

    PubMed  CAS  Google Scholar 

  6. Steiner GE, Stix U, Handisurya A et al. Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. Lab Invest 2003; 83(8):1131–1146.

    Article  PubMed  CAS  Google Scholar 

  7. Steiner GE, Djavan B, Kramer G et al. The picture of the prostatic lymphokine network is becoming increasingly complex. Rev Urol 2002; 4(4):171–177.

    PubMed  Google Scholar 

  8. Steiner GE, Newman ME, Paikl D et al. Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate 2003; 56(3):171–182.

    Article  PubMed  CAS  Google Scholar 

  9. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A 1999; 96(12):6879–6884.

    Article  PubMed  CAS  Google Scholar 

  10. Kramer G, Mitteregger D, Marberger M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur Urol 2007; 51(5):1202–1216.

    Article  PubMed  CAS  Google Scholar 

  11. De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 1999; 155(6):1985–1992.

    Article  PubMed  Google Scholar 

  12. De Marzo AM, Platz EA, Epstein JI et al. A working group classification of focal prostate atrophy lesions. Am J Surg Pathol 2006; 30(10):1281–1291.

    Article  PubMed  Google Scholar 

  13. Nakayama M, Bennett CJ, Hicks JL et al. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 2003; 163(3):923–933.

    Article  PubMed  CAS  Google Scholar 

  14. Sutcliffe S, Zenilman JM, Ghanem KG et al. Sexually transmitted infections and prostatic inflammation/cell damage as measured by serum prostate specific antigen concentration. J Urol 2006; 175(5):1937–1942.

    Article  PubMed  Google Scholar 

  15. Dennis LK, Dawson DV. Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology 2002; 13(1):72–79.

    Article  PubMed  Google Scholar 

  16. Taylor ML, Mainous AG, III, Wells BJ. Prostate cancer and sexually transmitted diseases: a meta-analysis. Fam Med 2005; 37(7):506–512.

    PubMed  Google Scholar 

  17. Sutcliffe S, Giovannucci E, Alderete JF et al. Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2006; 15(5):939–945.

    Article  PubMed  CAS  Google Scholar 

  18. Strickler HD, Goedert JJ. Sexual behavior and evidence for an infectious cause of prostate cancer. Epidemiol Rev 2001; 23(1):144–151.

    Article  PubMed  CAS  Google Scholar 

  19. Urisman A, Molinaro RJ, Fischer N et al. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2006; 2(3):e25.

    Article  PubMed  Google Scholar 

  20. Savage PA, Vosseller K, Kang C et al. Recognition of a ubiquitous self antigen by prostate cancer-infiltrating CD8+ T lymphocytes. Science 2008; 319(5860):215–220.

    Article  PubMed  CAS  Google Scholar 

  21. Ponniah S, Arah I, Alexander RB. PSA is a candidate self-antigen in autoimmune chronic prostatitis/chronic pelvic pain syndrome. Prostate 2000; 44(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  22. Dehm SM, Tindall DJ. Molecular regulation of androgen action in prostate cancer. J Cell Biochem 2006; 99(2):333–344.

    Article  PubMed  CAS  Google Scholar 

  23. Harkonen PL, Makela SI. Role of estrogens in development of prostate cancer. J Steroid Biochem Mol Biol 2004; 92(4):297–305.

    Article  PubMed  Google Scholar 

  24. Ho E, Boileau TW, Bray TM. Dietary influences on endocrine- inflammatory interactions in prostate cancer development. Arch Biochem Biophys 2004; 428(1):109–117.

    Article  PubMed  CAS  Google Scholar 

  25. Giovannucci E. Tomato products, lycopene, and prostate cancer: a review of the epidemiological literature. J Nutr 2005; 135(8):2030S–2031S.

    PubMed  CAS  Google Scholar 

  26. Heinonen OP, Albanes D, Virtamo J et al. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J Natl Cancer Inst 1998; 90(6):440–446.

    Article  PubMed  CAS  Google Scholar 

  27. Duffield-Lillico AJ, Dalkin BL, Reid ME et al. Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: an analysis of the complete treatment period of the Nutritional Prevention of Cancer Trial. BJU Int 2003; 91(7):608–612.

    Article  PubMed  CAS  Google Scholar 

  28. Knize MG, Felton JS. Formation and human risk of carcinogenic heterocyclic amines formed from natural precursors in meat. Nutr Rev 2005; 63(5):158–165.

    Article  PubMed  Google Scholar 

  29. Nakai Y, Nelson WG, De Marzo AM. The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res 2007; 67(3):1378–1384.

    Article  PubMed  CAS  Google Scholar 

  30. Leitzmann MF, Platz EA, Stampfer MJ, Willett WC, Giovannucci E. Ejaculation frequency and subsequent risk of prostate cancer. JAMA 2004; 291(13):1578–1586.

    Article  PubMed  CAS  Google Scholar 

  31. Lichtenstein P, Holm NV, Verkasalo PK et al. Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000; 343(2):78–85.

    Article  PubMed  CAS  Google Scholar 

  32. Page WF, Braun MM, Partin AW, Caporaso N, Walsh P. Heredity and prostate cancer: a study of World War II veteran twins. Prostate 1997; 33(4):240–245.

    Article  PubMed  CAS  Google Scholar 

  33. Gronberg H, Damber L, Damber JE. Studies of genetic factors in prostate cancer in a twin population. J Urol 1994; 152(5 Pt 1):1484–1487.

    PubMed  CAS  Google Scholar 

  34. Smith JR, Freije D, Carpten JD et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996; 274(5291):1371–1374.

    Article  PubMed  CAS  Google Scholar 

  35. Lindmark F, Zheng SL, Wiklund F et al. H6D polymorphism in macrophage-inhibitory cytokine-1 gene associated with prostate cancer. J Natl Cancer Inst 2004; 96(16):1248–1254.

    Article  PubMed  CAS  Google Scholar 

  36. Xu J, Zheng SL, Komiya A et al. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 2002; 32(2):321–325.

    Article  PubMed  CAS  Google Scholar 

  37. Sun J, Turner A, Xu J, Gronberg H, Isaacs W. Genetic variability in inflammation pathways and prostate cancer risk. Urol Oncol 2007; 25(3):250–259.

    Article  PubMed  CAS  Google Scholar 

  38. Castelli JC, Hassel BA, Wood KA et al. A study of the interferon antiviral mechanism: apoptosis activation by the 2-5A system. J Exp Med 1997; 186(6):967–972.

    Article  PubMed  CAS  Google Scholar 

  39. Schaid DJ. The complex genetic epidemiology of prostate cancer. Hum Mol Genet 2004; 13 Spec No 1:R103–R121.

    Article  PubMed  CAS  Google Scholar 

  40. Bootcov MR, Bauskin AR, Valenzuela SM et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci U S A 1997; 94(21):11514–11519.

    Article  PubMed  CAS  Google Scholar 

  41. Baek SJ, Kim KS, Nixon JB, Wilson LC, Eling TE. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol Pharmacol 2001; 59(4):901–908.

    PubMed  CAS  Google Scholar 

  42. Tan M, Wang Y, Guan K, Sun Y. PTGF-beta, a type beta transforming growth factor (TGF-beta) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-beta signaling pathway. Proc Natl Acad Sci U S A 2000; 97(1):109–114.

    Article  PubMed  CAS  Google Scholar 

  43. Paralkar VM, Vail AL, Grasser WA et al. Cloning and characterization of a novel member of the transforming growth factor-beta/bone morphogenetic protein family. J Biol Chem 1998; 273(22):13760–13767.

    Article  PubMed  CAS  Google Scholar 

  44. Shim M, Eling TE. Protein kinase C-dependent regulation of NAG-1/placental bone morphogenic protein/MIC-1 expression in LNCaP prostate carcinoma cells. J Biol Chem 2005; 280(19):18636–18642.

    Article  PubMed  CAS  Google Scholar 

  45. Fairlie WD, Moore AG, Bauskin AR, Russell PK, Zhang HP, Breit SN. MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation. J Leukoc Biol 1999; 65(1):2–5.

    PubMed  CAS  Google Scholar 

  46. Hayes VM, Severi G, Southey MC et al. Macrophage inhibitory cytokine-1 H6D polymorphism, prostate cancer risk, and survival. Cancer Epidemiol Biomarkers Prev 2006; 15(6):1223–1225.

    Article  PubMed  CAS  Google Scholar 

  47. Gough PJ, Greaves DR, Gordon S. A naturally occurring isoform of the human macrophage scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. J Lipid Res 1998; 39(3):531–543.

    PubMed  CAS  Google Scholar 

  48. Peiser L, De Winther MP, Makepeace K et al. The class A macrophage scavenger receptor is a major pattern recognition receptor for Neisseria meningitidis which is independent of lipopolysaccharide and not required for secretory responses. Infect Immun 2002; 70(10):5346–5354.

    Article  PubMed  CAS  Google Scholar 

  49. Sun J, Hsu FC, Turner AR et al. Meta-analysis of association of rare mutations and common sequence variants in the MSR1 gene and prostate cancer risk. Prostate 2006; 66(7):728–737.

    Article  PubMed  CAS  Google Scholar 

  50. Alexander RB, Ponniah S, Hasday J, Hebel JR. Elevated levels of proinflammatory cytokines in the semen of patients with chronic prostatitis/chronic pelvic pain syndrome. Urology 1998; 52(5):744–749.

    Article  PubMed  CAS  Google Scholar 

  51. Kim SJ, Uehara H, Karashima T, Mccarty M, Shih N, Fidler IJ. Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia 2001; 3(1):33–42.

    Article  PubMed  CAS  Google Scholar 

  52. Zheng SL, ugustsson-Balter K, Chang B et al. Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the Cancer Prostate in Sweden Study. Cancer Res 2004; 64(8):2918–2922.

    Article  PubMed  CAS  Google Scholar 

  53. Sun J, Wiklund F, Zheng SL et al. Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J Natl Cancer Inst 2005; 97(7):525–532.

    Article  PubMed  CAS  Google Scholar 

  54. Burnet FM. Immunological surveillance in neoplasia. Transplant Rev 1971; 7:3–25.

    PubMed  CAS  Google Scholar 

  55. Langowski JL, Zhang X, Wu L et al. IL-23 promotes tumour incidence and growth. Nature 2006; 442(7101):461–465.

    Article  PubMed  CAS  Google Scholar 

  56. O’Byrne KJ, Dalgleish AG. Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer 2001; 85(4):473–483.

    Article  PubMed  Google Scholar 

  57. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357(9255):539–545.

    Article  PubMed  CAS  Google Scholar 

  58. Beutler BA. The role of tumor necrosis factor in health and disease. J Rheumatol Suppl 1999; 57:16–21.

    PubMed  CAS  Google Scholar 

  59. Mizokami A, Gotoh A, Yamada H, Keller ET, Matsumoto T. Tumor necrosis factor-alpha represses androgen sensitivity in the LNCaP prostate cancer cell line. J Urol 2000; 164(3 Pt 1):800–805.

    PubMed  CAS  Google Scholar 

  60. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2(10):725–734.

    Article  PubMed  CAS  Google Scholar 

  61. Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 2008; 18(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  62. Luo JL, Tan W, Ricono JM et al. Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 2007; 446(7136):690–694.

    Article  PubMed  CAS  Google Scholar 

  63. Breen EC. VEGF in biological control. J Cell Biochem 2007; 102(6):1358–1367.

    Article  PubMed  CAS  Google Scholar 

  64. Aita M, Fasola G, Defferrari C et al. Targeting the VEGF pathway: Antiangiogenic strategies in the treatment of non-small cell lung cancer. Crit Rev Oncol Hematol 2008; 68(3):183–196.

    Article  PubMed  Google Scholar 

  65. Kollermann J, Helpap B. Expression of vascular endothelial growth factor (VEGF) and VEGF receptor Flk-1 in benign, premalignant, and malignant prostate tissue. Am J Clin Pathol 2001; 116(1):115–121.

    Article  PubMed  CAS  Google Scholar 

  66. Ito R, Kitadai Y, Kyo E et al. Interleukin 1 alpha acts as an autocrine growth stimulator for human gastric carcinoma cells. Cancer Res 1993; 53(17):4102–4106.

    PubMed  CAS  Google Scholar 

  67. Bar-Eli M. Role of interleukin-8 in tumor growth and metastasis of human melanoma. Pathobiology 1999; 67(1):12–18.

    Article  PubMed  CAS  Google Scholar 

  68. Brigati C, Noonan DM, Albini A, Benelli R. Tumors and inflammatory infiltrates: friends or foes? Clin Exp Metastasis 2002; 19(3):247–258.

    Article  PubMed  CAS  Google Scholar 

  69. Xie K. Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 2001; 12(4):375–391.

    Article  PubMed  CAS  Google Scholar 

  70. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917):860–867.

    Article  PubMed  CAS  Google Scholar 

  71. Moore BB, Arenberg DA, Stoy K et al. Distinct CXC chemokines mediate tumorigenicity of prostate cancer cells. Am J Pathol 1999; 154(5):1503–1512.

    Article  PubMed  CAS  Google Scholar 

  72. Parsons JK, Nelson CP, Gage WR, Nelson WG, Kensler TW, De Marzo AM. GSTA1 expression in normal, preneoplastic, and neoplastic human prostate tissue. Prostate 2001; 49(1):30–37.

    Article  PubMed  CAS  Google Scholar 

  73. Kovacic P, Jacintho JD. Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 2001; 8(7):773–796.

    Article  PubMed  CAS  Google Scholar 

  74. Sawa T, Ohshima H. Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide 2006; 14(2):91–100.

    Article  PubMed  CAS  Google Scholar 

  75. Zidek Z. Role of cytokines in the modulation of nitric oxide production by cyclic AMP. Eur Cytokine Netw 2001; 12(1):22–32.

    PubMed  CAS  Google Scholar 

  76. Shen Z, Wu W, Hazen SL. Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry 2000; 39(18):5474–5482.

    Article  PubMed  CAS  Google Scholar 

  77. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30(6):445–600.

    Article  PubMed  CAS  Google Scholar 

  78. Nelson WG, De Marzo AM, Deweese TL. The molecular pathogenesis of prostate cancer: implications for prostate cancer prevention. Urology 2001; 57(4 Suppl 1):39–45.

    Article  PubMed  CAS  Google Scholar 

  79. Bostwick DG, Alexander EE, Singh R et al. Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer 2000; 89(1):123–134.

    Article  PubMed  CAS  Google Scholar 

  80. Ripple MO, Henry WF, Rago RP, Wilding G. Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. J Natl Cancer Inst 1997; 89(1):40–48.

    Article  PubMed  CAS  Google Scholar 

  81. Hirst DG, Robson T. Nitrosative stress in cancer therapy. Front Biosci 2007; 12:3406–3418.

    Article  PubMed  CAS  Google Scholar 

  82. Jackson AL, Loeb LA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 2001; 477(1–2):7–21.

    PubMed  CAS  Google Scholar 

  83. Uchida K. A lipid-derived endogenous inducer of COX-2: a bridge between inflammation and oxidative stress. Mol Cells 2008; 25(3):347–351.

    PubMed  CAS  Google Scholar 

  84. Lu Y, Wahl LM. Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes. J Immunol 2005; 175(8):5423–5429.

    PubMed  CAS  Google Scholar 

  85. Fosslien E. Molecular pathology of cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci 2000; 30(1):3–21.

    PubMed  CAS  Google Scholar 

  86. Cao Y, Prescott SM. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol 2002; 190(3):279–286.

    Article  PubMed  CAS  Google Scholar 

  87. Gately S, Li WW. Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 2004; 31(2 Suppl 7):2–11.

    Article  PubMed  CAS  Google Scholar 

  88. Zha S, Gage WR, Sauvageot J et al. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 2001; 61(24):8617–8623.

    PubMed  CAS  Google Scholar 

  89. Kirschenbaum A, Liu X, Yao S, Levine AC. The role of cyclooxygenase-2 in prostate cancer. Urology 2001; 58(2 Suppl 1):127–131.

    Article  PubMed  CAS  Google Scholar 

  90. Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 1998; 58(2):362–366.

    PubMed  CAS  Google Scholar 

  91. Narayanan BA, Narayanan NK, Pittman B, Reddy BS. Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Clin Cancer Res 2004; 10(22):7727–7737.

    Article  PubMed  CAS  Google Scholar 

  92. Narayanan BA, Narayanan NK, Pttman B, Reddy BS. Adenocarcina of the mouse prostate growth inhibition by celecoxib: downregulation of transcription factors involved in COX-2 inhibition. Prostate 2006; 66(3):257–265.

    Article  PubMed  CAS  Google Scholar 

  93. Le NT, Xue M, Castelnoble LA, Jackson CJ. The dual personalities of matrix metalloproteinases in inflammation. Front Biosci 2007; 12:1475–1487.

    Article  PubMed  CAS  Google Scholar 

  94. Dieli F, Vermijlen D, Fulfaro F et al. Targeting human {gamma}{delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 2007; 67(15):7450–7457.

    Article  PubMed  CAS  Google Scholar 

  95. Kottke T, Sanchez-Perez L, Diaz RM et al. Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res 2007; 67(24):11970–11979.

    Article  PubMed  CAS  Google Scholar 

  96. Harris RE, Beebe-Donk J, Alshafie GA. Cancer chemoprevention by cyclooxygenase 2 (COX-2) blockade: results of case control studies. Subcell Biochem 2007; 42:193–212.

    Article  PubMed  Google Scholar 

  97. Harris RE, Beebe-Donk J, Doss H, Burr DD. Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (review). Oncol Rep 2005; 13(4):559–583.

    PubMed  CAS  Google Scholar 

  98. Smith MR, Manola J, Kaufman DS, Oh WK, Bubley GJ, Kantoff PW. Celecoxib versus placebo for men with prostate cancer and a rising serum prostate-specific antigen after radical prostatectomy and/or radiation therapy. J Clin Oncol 2006; 24(18):2723–2728.

    Article  PubMed  CAS  Google Scholar 

  99. Pruthi RS, Derksen JE, Moore D et al. Phase II trial of celecoxib in prostate-specific antigen recurrent prostate cancer after definitive radiation therapy or radical prostatectomy. Clin Cancer Res 2006; 12(7 Pt 1):2172–2177.

    Article  PubMed  CAS  Google Scholar 

  100. Sooriakumaran P, Langley SE, Laing RW, Coley HM. COX-2 inhibition: a possible role in the management of prostate cancer? J Chemother 2007; 19(1):21–32.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marshall Scott Lucia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lucia, M.S., Lambert, J.R., Platz, E.A., De Marzo, A.M. (2010). Inflammation as a Target in Prostate Cancer. In: Figg, W., Chau, C., Small, E. (eds) Drug Management of Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-829-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-829-4_33

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-831-7

  • Online ISBN: 978-1-60327-829-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics