Skip to main content

Cytogenetic Findings in Classical MPNs

  • Chapter
  • First Online:
Myeloproliferative Neoplasms

Part of the book series: Contemporary Hematology ((CH))

  • 764 Accesses

Abstract

The myeloproliferative neoplasms (MPNs), as defined by the latest World Health Organisation’s (WHO) revision, include a range of clonal haematopoietic disorders that are characterised by an increase in the number of one or more mature blood cell progeny. Classical cytogenetic analysis has played a crucial role in the identification of important oncogenes in many haematological malignancies, the paradigm being the identification of the t(9;22) in chronic myeloid leukaemia. This discovery led not only to the elucidation of the pathogenetic role of the bcr-abl fusion gene, but also to the development of effective targeted therapy. Other oncogenic events, involving the activation of different tyrosine kinases, were subsequently identified by the study of rare translocations. In contrast, the pathogenesis of the Philadelphia-negative MPNs namely, essential thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), as well as chronic neutrophilic leukeamia (CNL), has not been greatly advanced by karyotypic analysis. Nevertheless, cytogenetic analysis still has a role in the routine investigation of such patients, as an abnormal profile provides evidence of clonality: a factor recognised by the WHO diagnostic criteria (Table 3.1). In addition, cytogenetic analysis may also provide valuable prognostic information in PMF, assist in the selection of specific therapy and ensure the exclusion of related disorders that may be associated with marrow fibrosis (see review [1]). The aim of this chapter is to review the current knowledge of chromosomal abnormalities in the MPN and to highlight possible pathogenetic consequences of such changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reilly JT. Pathogenetic insight and prognostic information from standard and molecular cytogenetic studies in the BCR-ABL-negative myeloproliferative neoplasms (MPNs). Leukemia. 2008; 22: 1818–1827.

    Article  PubMed  CAS  Google Scholar 

  2. Gangat N, Tefferi A, Thanarajasingam G, et al. Cytogenetic abnormalities in essential thrombocythemia: prevalence and prognostic significance. Eur J Haematol. 2009; 83: 17–21.

    Article  PubMed  CAS  Google Scholar 

  3. Steensma DP, Tefferi A. Cytogenetic and molecular genetic aspects of essential thrombocthemia. Acta Haematol. 2003; 108: 55–65.

    Article  Google Scholar 

  4. Borze I, Mustjoki S, Juvonen E, Knuutila S. Oligoarray comparative genomic hybridization in polycythemia vera and essential thrombocythemia. Haematologica. 2008; 93: 1098–1100.

    Article  PubMed  Google Scholar 

  5. Diez-Martin JL, Graham DL, Petitt RM, Dewald GW. Chromosome studies in 104 patients with polycythemia vera. Mayo Clin Proc. 1991; 66: 287–299.

    Article  PubMed  CAS  Google Scholar 

  6. Gangat N, Strand J, Lasho TL, et al. Cytogenetic studies at diagnosis in polycythemia vera: clinical and JAK2 V617F allele burden correlates. Eur J Haematol. 2008; 80: 197–200.

    Article  PubMed  Google Scholar 

  7. Larsen TS, Hasselbalch HC, Pallisgaard N, Kerndrup GB. A der(18)t(9;18)(p13;p11) and a der(9;18)(p10;q10) in polycythemia vera associated with a hyperproliferative phenotype in transformation to postpolycythemia myelofibrosis. Cancer Genet Cytogenet. 2007; 172: 107–112.

    Article  PubMed  CAS  Google Scholar 

  8. Reilly JT. Pathogenesis and management of idiopathic myelofibrosis. Bailliere’s Clin Haematol. 1998; 11: 751–767.

    Article  CAS  Google Scholar 

  9. Hussein K, Huang J, Lasho T, et al. Karyotype complements the International Prognostic Scoring System for primary myelofibrosis. Eur J Haematol. 2009; 82: 255–259.

    Article  PubMed  Google Scholar 

  10. Demory JL, Dupriez B, Fenaux P, et al. Cytogenetic studies and their prognostic significance in agnogenic myeloid metaplasia: a report on 47 cases. Blood. 1988; 72: 855–859.

    PubMed  CAS  Google Scholar 

  11. Reilly JT, Snowden JA, Spearing RL. et al. Cytogenetic abnormalities and their prognostic significance in idiopathic myelofibrosis: a study of 106 cases. Br J Haematol. 1997; 98: 96–102.

    Article  PubMed  CAS  Google Scholar 

  12. Tefferi A, Mesa RA, Schroeder G, Hanson CA, Li CY, Dewald GW. Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia. Br J Haematol. 2001; 113: 763–771.

    Article  PubMed  CAS  Google Scholar 

  13. Hidaka T, Shide K, Shimoda H, et al. The impact of cytogenetic abnormalities on the prognosis of primary myelofibrosis: a prospective survey of 202 cases in Japan. Eur J Haematol. 2009; 83: 328–333.

    Article  PubMed  Google Scholar 

  14. Dingli D, Grand FH, Mahaffey V, et al. Der(6)t(1;6)(q21-23;p21.3): the first specific cytogenetic abnormality in myelofibrosis with myeloid metaplasia. Br J Haematol. 2005; 130: 229–232.

    Article  PubMed  CAS  Google Scholar 

  15. Dupriez B, Morel P, Demory JL, et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood. 1996; 88: 1013–1018.

    PubMed  CAS  Google Scholar 

  16. Cervantes F, Barosi G, Hernandez-Boluda J-C, Marchetti M, Montserrat E. Myelofibrosis with myeloid metaplasia in adult individuals 30 years old or younger: presenting features, evolution and survival. Eur J Haematol. 2001; 66: 324–327.

    Article  PubMed  CAS  Google Scholar 

  17. Tefferi A, Dingli D, Li C-Y, Dewald GW. Prognostic diversity among cytogenetic abnormalities in myelofibrosis with myeloid metaplasia. Cancer. 2005; 104: 1656–1660.

    Article  PubMed  CAS  Google Scholar 

  18. Dingli D, Schwager SM, Mesa RA, Li C-Y, Dewald GW, Tefferi A. Presence of unfavourable cytogenetic abnormalities is the strongest predictor of poor survival in secondary myelofibrosis. Cancer. 2006; 106: 1985–1989.

    Article  PubMed  Google Scholar 

  19. Cervantes F, Dupriez B, Pereira A. et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009; 113: 2895–2901.

    Article  PubMed  CAS  Google Scholar 

  20. Tam CS, Abruzzo LV, Lin KI, et al. The role of cytogenetic abnormalities as a prognostic marker in primary myelofibrosis: applicability at the time of diagnosis and later during disease course. Blood. 2009; 113: 4171–4178.

    Article  PubMed  CAS  Google Scholar 

  21. Strasser-Weippl K, Steurer M, Kees M, et al. Chromosome 7 deletions are associated with unfavourable prognosis in myelofibrosis with myeloid metaplasia. Blood. 2005; 105: 4146.

    Article  PubMed  CAS  Google Scholar 

  22. Reilly JT. Chronic neutrophilic leukaemia: a distinct clinical entity? Br J Haematol. 2002; 116: 10–18.

    Article  PubMed  Google Scholar 

  23. Andrieux J, Demory JL, Caulier MT, et al. Karyotypic abnormalities in myelofibrosis following polycythemia vera. Cancer Genet Cytogenet. 2003; 140: 118–123.

    Article  PubMed  CAS  Google Scholar 

  24. Busson-Le Coniat M, Salomon-Nguven F, Dastugue N. et al. Fluorescence in situ hybridization analysis of chromosome 1 abnormalities in hematopoietic disorders: rearrangements of DNA satellite II and new recurrent translocations. Leukemia. 1999; 13: 1975–1981.

    Article  PubMed  CAS  Google Scholar 

  25. Lim LP, Lau LC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005; 433: 769–773.

    Article  PubMed  CAS  Google Scholar 

  26. Amiel A, Gaber E, Manor Y, et al. Fluorescence in situ hybridization for the detection of trisomies 8 and 9 in polycythemia vera. Cancer Genetic Cytogenet. 1995; 79: 153–156.

    Article  CAS  Google Scholar 

  27. Al-Assar O, Ul-Hassan A, Brown A, Wilson GA, Hammond DW, Reilly JT. Gains of 9p are common genomic aberrations in idiopathic myelofibrosis: a comparative genomic hydridization study. Br J Haematol. 2005; 129: 66–71.

    Article  PubMed  CAS  Google Scholar 

  28. Helias C, Struski S, Gervais C, et al. Polycythaemia vera transforming to acute myeloid leukemia and complex abnormalities of MLLT3, JMJD2C, JAK2, and SMARCA2. Cancer Genetic Cytogenetic. 2008; 180: 51–55.

    Article  CAS  Google Scholar 

  29. Sinclair EJ, Forrest EC, Reilly JT, Watemore AE, Potter AM. Fluorescence in situ hybridization analysis of 25 cases of idiopathic myelofibrosis and two cases of secondary myelofibrosis. Monoallelic loss of RB1, D13S319 and D13S25 loci associated with cytogenetic deletion and translocation involving 13q14. Br J Haematol. 2001; 113: 365–368.

    Article  PubMed  CAS  Google Scholar 

  30. Kurtin PJ, Dewald GW, Shields DJ, Hanson CA. Hematologic disorders associated with deletion of chromosome 20q: a clinicopathologic study of 107 patients. Am J Clin Path. 1996; 106: 680–688.

    PubMed  CAS  Google Scholar 

  31. Nacheva E, Holloway T, Carter N, Grace C, White N, Green AR. Characterization of 20q deletions in patients with myeloproliferative disorders or myelodysplastic syndromes. Cancer Genet Cytogenet. 1995; 80: 87–94.

    Article  PubMed  CAS  Google Scholar 

  32. Roulston S, Espinosa R III, Stoffel M, Bell GI, Le Beau MM. Molecular genetics of myeloid leukaemia:identification of the commonly deleted segment of chromosome 20. Blood. 1993; 82: 3424–3429.

    PubMed  CAS  Google Scholar 

  33. Wang PW, Eisenbart JD, Espinosa R, Davis EM, Larson RA, Le Beau MM. Refinement of the smallest commonly deleted segment of chromosome 20 in malignant myeloid diseases and development of a PAC-based physical and transcription map. Genomics. 2000; 67: 28–39.

    Article  PubMed  CAS  Google Scholar 

  34. Bench AJ, Nacheva EP, Hood TL, et al. Chromosome 20 deletions in myeloid malignancies: reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes. UK Cancer Cytogenetic Group (UKCCG). Oncogene. 2000; 20: 4150–4160.

    Google Scholar 

  35. MacGrogan D, Alvarez S, DeBlasio T, Jhanwar SC, Nimer SD. Identification of candidate genes on chromosome band 20q12 by physical mapping of translocation breakpoints found in myeloid leukaemia cell lines. Oncogene. 2001; 20: 4150–4160.

    Article  PubMed  CAS  Google Scholar 

  36. Koga H, Matsui S, Hirota T, Takebayashi S, Okumura K, Saya H. A human hom olog of Drosophila lethal (3) malignant brain tumor (1(3)mbt) protein associates with condensed mitotic chromosomes. Oncogene. 1999; 18: 3799–3809.

    Article  PubMed  CAS  Google Scholar 

  37. Boccuni P, MacGrogan D, Scandura JM, Nimer SD. The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J Bio Chem. 2003; 278: 15412–15420.

    Article  CAS  Google Scholar 

  38. Bench AJ, Li J, Huntly BJP, Delabesse E, et al. Characterization of the imprinted polycomb gene L3MBTL, a candidate 20q tumour suppressor gene, in patients with myeloid malignancies. Br J Haematol. 2004; 127: 509–518.

    Article  PubMed  CAS  Google Scholar 

  39. Li J, Bench AJ, Vassiliou GS, Fourouclas N, Ferguson-Smith AC, Green AC. Imprinting of the human L3MBTL gene, a polycomb family member located in a region of chromosome 20 deleted in human myeloid malignancies. Proc Natl Acad Sci USA. 2004; 101: 7341–7346.

    Article  PubMed  CAS  Google Scholar 

  40. Knuutila S, Teerenhovi L, Larramendy ML, et al. Cell lineage involvement of recurrent chromosomal abnormalities in hematologic neoplasms. Genes Chromsomes Cancer. 1994; 10: 95–102.

    Article  CAS  Google Scholar 

  41. Hollings PE, Beard MEJ, Rosman I. A 20q deletion originating in a pluripotential stem cell. Blood. 1994; 83: 306–307.

    Google Scholar 

  42. Reeder TL, Bailey RJ, Dewald GW. Tefferi A Both B and T lymphocytes may be clonally involved in myelofibrosis with myeloid metaplasia. Blood. 2003; 101: 1981–1983.

    Article  PubMed  CAS  Google Scholar 

  43. White NJ, Nacheva E, Asimakopoulos FA, Paul B, Green AR. Deletion of chromosome 20q in myelodysplasia can occur in a multipotent precursor of both myeloid cells and B cells. Blood. 1994; 83: 2809–2816.

    PubMed  CAS  Google Scholar 

  44. Asimakopoulos FA, Holloway TL, Nacheva EP, Scott MA, Fenaux P, Green AR. Detection of chromosome 20q deletions in bone marrow metaphases but not peripheral blood granulocytes in patients with myeloproliferative disorders or myelodysplastic syndromes. Blood. 1996; 87: 1561–1570.

    PubMed  CAS  Google Scholar 

  45. Campbell PJ, Baxter EJ, Beer PA, et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood. 2006; 108: 3548–3555.

    Article  PubMed  CAS  Google Scholar 

  46. Najfeld V, Cozza A, Berkofsy-Fessler W, Prchal J, Scalise A. Numerical gain and structural rearrangements of JAK2, identified by FISH, characterize both JAK2617V>F-positive and -negative patients with Ph-negative MPD, myelodysplasia, and B-lymphoid neoplasms. Exp Hematol. 2007; 35: 1668–1676.

    Article  PubMed  CAS  Google Scholar 

  47. Theocharides A, Boissinot M, Girodon F, et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood. 2007; 110: 375–379.

    Article  PubMed  CAS  Google Scholar 

  48. Hsiao HH, Yang WC, Liu YC, Lee CP, Lin SF. Disappearance of JAK2 V617F mutation in a rapid leukemic transformed essential thrombocythemia patient. Leuk Res. 2008; 32: 1323–1324.

    Article  PubMed  CAS  Google Scholar 

  49. Kralovics R, Teo SS, Li S, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006; 108: 1377–1380.

    Article  PubMed  CAS  Google Scholar 

  50. Schaub FX, Jager R, Looser R, Hao-Shen H, Hermouet S, Girodon F, Tichelli A, Gisslinger H, Kralovics R, Skoda RC. Clonal analysis of deletions on chromosome 20q and JAK2-V617F in MPD suggests that del20q acts independently and is not one of the predisposing mutations for JAK2-VI6F. Blood. 2009; 113: 2022–2027.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Reilly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reilly, J.T. (2011). Cytogenetic Findings in Classical MPNs. In: Verstovsek, S., Tefferi, A. (eds) Myeloproliferative Neoplasms. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-266-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-266-7_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-265-0

  • Online ISBN: 978-1-60761-266-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics