Skip to main content

An Experimental Model of Myocardial and Cerebral Global Ischemia and Reperfusion

  • Chapter
  • First Online:
Studies on Experimental Models
  • 1229 Accesses

Abstract

Despite many programs aimed at better immediate care of cardiac arrest victims, the subsequent mortality rate remains high, with myocardial and central nervous system injuries as the most common causes of death. Preclinical research is badly needed to produce a sound base for future clinical trials and possible improvements in clinical outcome. Our continued use of a porcine model for studies of cerebral effects of anoxia and reperfusion has shown that this model results in standardized effects, where time of cardiac arrest and reperfusion are approximately proportional to the ischemic neurological injury. Free radical damage is proved to be an important pathophysiological mechanism in the early development of this nervous injury. Hence, not unexpectedly, early experimental treatment after total ischemia during early reperfusion results in improved measures of cerebral tissue damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fredriksson M, Herlitz J, Engdahl J. Nineteen years’ experience of out-of-hospital cardiac arrest in Gothenburg – reported in Utstein style. Resuscitation. 2003 Jul; 58(1):37–47.

    Article  PubMed  Google Scholar 

  2. Herlitz J HS. Nationellt register för hjärtstopp utanför sjukhus (National register on cardiac arrests occurring outside hospitals). Gothenburg; 2004 Contract No.: Document Number|.

    Google Scholar 

  3. Wiklund L, Sharma HS, Basu S. Circulatory arrest as a model for studies of global ischemic injury and neuroprotection. Ann N Y Acad Sci. 2005 Aug;1053:205–219.

    Article  PubMed  Google Scholar 

  4. Bircher N, Safar P. Cerebral preservation during cardiopulmonary resuscitation. Crit Care Med. 1985; 13(3):185–190.

    Article  PubMed  CAS  Google Scholar 

  5. Mortberg E, Cumming P, Wiklund L, Rubertsson S. Cerebral metabolic rate of oxygen (CMRO2) in pig brain determined by PET after resuscitation from cardiac arrest. Resuscitation. 2009 Jun; 80(6):701–706.

    Article  PubMed  Google Scholar 

  6. Mortberg E, Cumming P, Wiklund L, Wall A, Rubertsson S. A PET study of regional cerebral blood flow after experimental cardiopulmonary resuscitation. Resuscitation. 2007 Oct; 75(1):98–104.

    Article  PubMed  Google Scholar 

  7. Sharma HS, Cervos-Navarro J. Brain oedema and cellular changes induced by acute heat stress in young rats. Acta Neurochir Suppl (Wien).    1990; 51:383–386.

    CAS  Google Scholar 

  8. Basu S, Nozari A, Liu XL, Rubertsson S, Wiklund L. Development of a novel biomarker of free radical damage in reperfusion injury after cardiac arrest. FEBS Lett. 2000; 470(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  9. Miclescu A, Basu S, Wiklund L. Methylene blue added to a hypertonic-hyperoncotic solution increases short-term survival in experimental cardiac arrest. Crit Care Med. 2006 Nov; 34(11):2806–2813.

    Article  PubMed  CAS  Google Scholar 

  10. Basu S. Radioimmunoassay of 8-iso-prostaglandin F2alpha: an index for oxidative injury via free radical catalysed lipid peroxidation. Prostaglandins Leukot Essent Fatty Acids. 1998; 58(4):319–325.

    Google Scholar 

  11. Basu S. Radioimmunoassay of 15-keto-13,14-dihydro-prostaglandin F2alpha: an index for inflammation via cyclooxygenase catalysed lipid peroxidation. Prostaglandins Leukot Essent Fatty Acids. 1998 May; 58(5):347–352.

    Google Scholar 

  12. Hossmann KA. Resuscitation potentials after prolonged global cerebral ischemia in cats. Crit Care Med. 1988; 16(10):964–971.

    Article  PubMed  CAS  Google Scholar 

  13. Hossmann KA. The hypoxic brain. Insights from ischemia research. Advances in Experimental Medicine and Biology. 1999; 474:155–69.

    Google Scholar 

  14. Rubertsson S, Grenvik A, Wiklund L. Blood flow and perfusion pressure during open-chest versus closed-chest cardiopulmonary resuscitation in pigs. Crit Care Med. 1995; 23(4):715–725.

    Article  PubMed  CAS  Google Scholar 

  15. Wiklund L, Soderberg D, Henneberg S, Rubertsson S, Stjernstrom H, Groth T. Kinetics of carbon dioxide during cardiopulmonary resuscitation. Crit Care Med. 1986; 14(12):1015–1022.

    Article  PubMed  CAS  Google Scholar 

  16. Schaafsma A, de Jong BM, Bams JL, Haaxma-Reiche H, Pruim J, Zijlstra JG. Cerebral perfusion and metabolism in resuscitated patients with severe post-hypoxic encephalopathy. J Neurol Sci. 2003 Jun 15; 210(1-2):23–30.

    Article  PubMed  CAS  Google Scholar 

  17. Toyoda K, Fujii K, Ibayashi S, Nagao T, Kitazono T, Fujishima M. Role of nitric oxide in regulation of brain stem circulation during hypotension. J Cereb Blood Flow Metab. 1997 Oct; 17(10):1089–1096.

    Article  PubMed  CAS  Google Scholar 

  18. Tsuchidate R, He QP, Smith ML, Siesjo BK. Regional cerebral blood flow during and after 2 hours of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab. 1997 Oct; 17(10):1066–1073.

    Article  PubMed  CAS  Google Scholar 

  19. Ames A, 3rd, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968 Feb; 52(2):437–53.

    Google Scholar 

  20. Fischer EG, Ames A, 3rd, Lorenzo AV. Cerebral blood flow immediately following brief circulatory stasis. Stroke. 1979 Jul-Aug; 10(4):423–427.

    Google Scholar 

  21. Fischer M, Hossmann KA. No-reflow after cardiac arrest. Intensive Care Med. 1995;21(2):132–141.

    Article  PubMed  CAS  Google Scholar 

  22. Kagstrom E, Smith ML, Siesjo BK. Local cerebral blood flow in the recovery period following complete cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1983 Jun; 3(2):170–182.

    Article  PubMed  CAS  Google Scholar 

  23. Gaszynski W. Research work on blood clotting system during cardiorespiratory resuscitation. Anaesth Resusc Intensive Ther. 1974 Oct-Dec; 2(4):303–316.

    Google Scholar 

  24. Hekmatpanah J. Cerebral blood flow dynamics in hypotension and cardiac arrest. Neurology. 1973 Feb; 23(2):174–180.

    Article  PubMed  CAS  Google Scholar 

  25. Hossmann V, Hossmann KA, Takagi S. Effect of intravascular platelet aggregation on blood recirculation following prolonged ischemia of the cat brain. J Neurol. 1980 Jan; 222(3):159–170.

    Article  PubMed  CAS  Google Scholar 

  26. Geraghty MC, Torbey MT. Neuroimaging and serologic markers of neurologic injury after cardiac arrest. Neurol Clin. 2006 Feb; 24(1):107–121, vii.

    Google Scholar 

  27. Martin LJ, Brambrink A, Koehler RC, Traystman RJ. Primary sensory and forebrain motor systems in the newborn brain are preferentially damaged by hypoxia-ischemia. J Comp Neurol. 1997 Jan 13; 377(2):262–285.

    Article  PubMed  CAS  Google Scholar 

  28. Gedeborg R, Silander HC, Ronne-Engstrom E, Rubertsson S, Wiklund L. Adverse effects of high-dose epinephrine on cerebral blood flow during experimental cardiopulmonary resuscitation. Crit Care Med. 2000; 28(5):1423–1430.

    Article  PubMed  CAS  Google Scholar 

  29. Gedeborg R, Rubertsson S, Wiklund L. Improved haemodynamics and restoration of spontaneous circulation with constant aortic occlusion during experimental cardiopulmonary resuscitation. Resuscitation. 1999; 40(3):171–180.

    Article  PubMed  CAS  Google Scholar 

  30. Gedeborg R, Silander CsH, Rubertsson S, Wiklund L. Cerebral ischemia in experimental cardiopulmonary resuscitation - comparison of epinephrine and aortic occlusion. Resuscitation. 2001(50):319–329.

    Google Scholar 

  31. Nozari A, Rubertsson S, Wiklund L. Improved cerebral blood supply and oxygenation by aortic balloon occlusion combined with intra-aortic vasopressin administration during experimental cardiopulmonary resuscitation. Acta Anaesthesiol Scand. 2000; 44(10):1209–1219.

    Article  PubMed  CAS  Google Scholar 

  32. Lindner KH, Brinkmann A, Pfenninger EG, Lurie KG, Goertz A, Lindner IM. Effect of vasopressin on hemodynamic variables, organ blood flow, and acid-base status in a pig model of cardiopulmonary resuscitation. Anesth Analg. 1993; 77(3):427–435.

    Article  PubMed  CAS  Google Scholar 

  33. Lindner KH, Dirks B, Strohmenger HU, Prengel AW, Lindner IM, Lurie KG. Randomised comparison of epinephrine and vasopressin in patients with out-of-hospital ventricular fibrillation. Lancet. 1997; 349(9051):535–537.

    Article  PubMed  CAS  Google Scholar 

  34. Nozari A, Rubertsson S, Wiklund L. Differences in the pharmacodynamics of epinephrine and vasopressin during and after experimental cardiopulmonary resuscitation. Resuscitation. 2001; 49(1):59–72.

    Article  PubMed  CAS  Google Scholar 

  35. Wenzel V, Krismer AC, Arntz HR, Sitter H, Stadlbauer KH, Lindner KH. A comparison of vasopressin and epinephrine for out-of-hospital cardiopulmonary resuscitation. N Engl J Med. 2004 Jan 8; 350(2):105–113.

    Article  PubMed  CAS  Google Scholar 

  36. Wik L, Kramer-Johansen JO, Myklebust H, Sørebø H, Svensson L, Fellows B, et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA. 2005; 293:299–304.

    Article  PubMed  CAS  Google Scholar 

  37. Sunde K, Wik L, Steen PA. Quality of mechanical, manual standard and active compression-decompression CPR on the arrest site and during transport in a manikin model. Resuscitation. 1997 Jun; 34(3):235–242.

    Article  PubMed  CAS  Google Scholar 

  38. Hossmann KA. Reperfusion of the brain after global ischemia: hemodynamic disturbances. Shock (Augusta, Ga). 1997 Aug 8(2):95-101; discussion 2–3.

    Google Scholar 

  39. Fischer M, Dahmen A, Standop J, Hagendorff A, Hoeft A, Krep H. Effects of hypertonic saline on myocardial blood flow in a porcine model of prolonged cardiac arrest. Resuscitation. 2002 Sep; 54(3):269–280.

    Article  PubMed  CAS  Google Scholar 

  40. Ward KR MJ, Zelenak RR, Sullivan RJ, McSwain NE Jr. A comparison of chest compressions between mechanical and manual CPR by monitoring end-tidal PCO2 during human cardiac arrest. Ann Emerg Med. 1993; 22(4):669–674.

    Article  PubMed  CAS  Google Scholar 

  41. Rubertsson S KR. Increased cortical cerebral blood flow with LUCAS: a new device for mechanical chest compressions as compared to standard external compressions during experimental cardiopulmonary resuscitation. Resuscitation. 2005; In Press.

    Google Scholar 

  42. Steen S, Liao Q, Pierre L, Paskevicius A, Sjoberg T. Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation. 2002 Dec; 55(3):285–299.

    Article  PubMed  Google Scholar 

  43. Basu S. F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal. 2008 Aug; 10(8):1405–1434.

    Article  PubMed  CAS  Google Scholar 

  44. Basu S. Novel cyclooxygenase-catalyzed bioactive prostaglandin F2alpha from physiology to new principles in inflammation. Med Res Rev. 2007 Jul; 27(4):435–468.

    Article  PubMed  CAS  Google Scholar 

  45. Liu XL, Nozari A, Basu S, Ronquist G, Rubertsson S, Wiklund L. Neurological outcome after experimental cardiopulmonary resuscitation: A result of delayed and potentially treatable neuronal injury? Acta Anaesthesiologica Scandinavica. 2002; 46(5):537–546.

    Article  PubMed  CAS  Google Scholar 

  46. Liu XL, Wiklund L, Nozari A, Rubertsson S, Basu S. Differences in cerebral reperfusion and oxidative injury after cardiac arrest in pigs. Acta Anaesthesiol Scand. 2003 Sep; 47(8):958–967.

    Article  PubMed  CAS  Google Scholar 

  47. Basu S, Liu X, Nozari A, Rubertsson S, Miclescu A, Wiklund L. Evidence for time-dependent maximum increase of free radical damage and eicosanoid formation in the brain as related to duration of cardiac arrest and cardio-pulmonary resuscitation. Free Radic Res. 2003 Mar; 37(3):251–256.

    Article  PubMed  CAS  Google Scholar 

  48. Nozari A, Rubertsson S, Gedeborg R, Nordgren A, Wiklund L. Maximisation of cerebral blood flow during experimental cardiopulmonary resuscitation does not ameliorate post-resuscitation hypoperfusion. Resuscitation. 1999; 40(1):27–35.

    Article  PubMed  CAS  Google Scholar 

  49. Mayer B, Brunner F, Schmidt K. Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol. 1993; 45(2):367–374.

    Article  PubMed  CAS  Google Scholar 

  50. Mayer B, Brunner F, Schmidt K. Novel actions of methylene blue. Eur Heart J. 1993;14 Suppl I:22–26.

    PubMed  CAS  Google Scholar 

  51. Gruetter C, Kadowitz P, Ignarro L. Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrate, and amyl nitrite. Can J Physiol Pharmacol. 1981; 59:150–156.

    Article  PubMed  CAS  Google Scholar 

  52. Gruetter CA, Gruetter DY, Lyon JE, Kadowitz PJ, Ignarro LJ. Relationship between cyclic guanosine 3,5-monophosphate formation and relaxation of coronary smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide, effects of methylene blue and methemoglobin. J Pharm Exp Therapeutics. 1981; 219:181–186.

    CAS  Google Scholar 

  53. Hay DW, Martin SA, Sugata R, Lichtin NN. Disproportionation of semimethylene blue and oxidation of leucomethylene blue by methylene blue and iron(III). Kinetics, equilibriums, and medium effects. J Phys Chem. 1981; 85:1474–1479.

    Article  CAS  Google Scholar 

  54. Sevcik P, Dunford HB. Kinetics of the oxidation of NADH by methylene blue in a closed system. J Phys Chem. 1991; 95:2411–2415.

    Article  CAS  Google Scholar 

  55. Johnstone MT, Lam JYT, Lacoste L, al. e. Methylene blue inhibits the antithrombotic effect of nitroglycerin. J Am Coll Cardiol. 1993; 20:255–259.

    Article  Google Scholar 

  56. Diodati J, Theroux P, Latour JG, al e. Effect of nitroglycerin at therapeutic doses on platelet aggregation in unstable angina pectoris and unstable angina. Am J Cardiol. 1990; 66:683–688.

    Article  PubMed  CAS  Google Scholar 

  57. Schmidt HH, Pollock JS, Nakane M, Forstermann U, Murad F. Ca2+/calmodulin-regulated nitric oxide synthases. Cell Calcium. 1992; 13:427–434.

    Article  PubMed  CAS  Google Scholar 

  58. Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987; ii:1057–1058.

    Google Scholar 

  59. Azuma H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol. 1986; 88:411–415.

    Article  PubMed  CAS  Google Scholar 

  60. Shafer AI, Alexander RW, Handin RI. Inhibition of platelet function by organic nitrate vasodilators. Blood. 1980; 55:649–554.

    Google Scholar 

  61. Schroer K, Grodzinska L, Darius H. Stimulation of coronary vascular prostacyclin and inhibition of human platelet thromboxane A2 after low-dose nitroglycerin. Thrombosis Res. 1981; 23:59–67.

    Article  CAS  Google Scholar 

  62. Salvemini D, Currie MG, Mollace V. Nitric oxide-mediated cyclooxygenase activation. J Clin Invest.    1996; 97:2562–2568.

    Article  PubMed  CAS  Google Scholar 

  63. Stamler JS, Loscalzo J. The antiplatelet effects of organic nitrates and related nitrous compounds in vivo and in vitro and their relevance to cardiovascular disorders. J Am Coll Cardiol. 1991; 18:1529–1536.

    Article  PubMed  CAS  Google Scholar 

  64. Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. NEJM. 1990; 323:27–36.

    Article  PubMed  CAS  Google Scholar 

  65. Wen FQ, Watanabe K, Yoshida M. Nitric oxide enhances PGI2 production by human pulmonary artery smooth muscle cells. Prostaglandins Leucotrienes Ess Fatty Cids. 2000; 62:369–378.

    Article  CAS  Google Scholar 

  66. Tateson JE, Moncada S, Vane JR. Effects of prostacyclin (PGI) on cyclic AMP concentrations in human platelets. Prostaglandins. 1977; 13:389–397.

    PubMed  CAS  Google Scholar 

  67. Levin RI, Jaffe EA, Weksler BB. Nitroglycerin stimulates synthesis of prostacyclin by cultured human endothelial cells. J Clin Invest. 1981; 67:762–769.

    Article  PubMed  CAS  Google Scholar 

  68. Salaris SC, Babbs CF, Voorhees WD, 3rd. Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury. Biochem Pharmacol. 1991 Jul 15; 42(3):499–506.

    Article  PubMed  CAS  Google Scholar 

  69. Kelner MJ, Bagnell R, Hale B, Alexander NM. Potential of methylene blue to block oxygen radical generation in reperfusion injury. Basic Life Sci. 1988; 49:895–898.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Continued financial support over the years from The Laerdal Foundation for Acute Medicine is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Wiklund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wiklund, L., Basu, S. (2011). An Experimental Model of Myocardial and Cerebral Global Ischemia and Reperfusion. In: Basu, S., Wiklund, L. (eds) Studies on Experimental Models. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-956-7_13

Download citation

Publish with us

Policies and ethics