Skip to main content

Array Comparative Genomic Hybridization in Cytogenetics and Molecular Genetics

  • Chapter
  • First Online:
Molecular Genetics and Personalized Medicine

Abstract

Variations in the human genome range from single nucleotide changes to whole chromosomal aneuploidies. De novo single nucleotide changes are estimated to occur at a rate of 1.7 × 10−8 per nucleotide in every generation (Kondrashov, Hum Mutat 21(1):12–27, 2003). These sequence variations include coding and noncoding nucleotide changes that may or may not be important in disease. At the opposite end of the spectrum are large segmental genomic rearrangements (inversions and translocations) and copy number changes (CNCs), that is, aneuploidies, marker chromosomes, and large interstitial deletions and duplications. The portion of the human genome that shows variations in segmental genomic copy numbers between individuals accounts for 12% of the DNA. Moreover, de novo copy number changes in newborns are expected to occur once in every 8 births for deletions and once in every 50 births for duplications (van Ommen, Nat Genet 37(4):333–334, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kondrashov AS. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum Mutat. 2003;21(1):12–27.

    Article  PubMed  CAS  Google Scholar 

  2. van Ommen GJ. Frequency of new copy number variation in humans. Nat Genet. 2005;37(4):333–4.

    Article  PubMed  Google Scholar 

  3. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91.

    Article  PubMed  CAS  Google Scholar 

  4. Christian SL, Robinson WP, Huang B, et al. Molecular characterization of two proximal deletion breakpoint regions in both Prader-Willi and Angelman syndrome patients. Am J Hum Genet. 1995;57(1):40–8.

    PubMed  CAS  Google Scholar 

  5. Chen KS, Manian P, Koeuth T, et al. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet. 1997;17(2):154–63.

    Article  PubMed  CAS  Google Scholar 

  6. Dutly F, Schinzel A. Unequal interchromosomal rearrangements may result in elastin gene deletions causing the Williams-Beuren syndrome. Hum Mol Genet. 1996;5(12):1893–8.

    Article  PubMed  CAS  Google Scholar 

  7. Lindsay EA. Chromosomal microdeletions: dissecting del22q11 syndrome. Nat Rev Genet. 2001;2(11):858–68.

    Article  PubMed  CAS  Google Scholar 

  8. Scambler PJ. The 22q11 deletion syndromes. Hum Mol Genet. 2000;9(16):2421–6.

    Article  PubMed  CAS  Google Scholar 

  9. Bittel DC, Yu S, Newkirk H, et al. Refining the 22q11.2 deletion breakpoints in DiGeorge syndrome by aCGH. Cytogenet Genome Res. 2009;124(2):113–20.

    Article  PubMed  CAS  Google Scholar 

  10. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.

    Article  PubMed  CAS  Google Scholar 

  11. Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258(5083):818–21.

    Article  PubMed  CAS  Google Scholar 

  12. Kirchhoff M, Gerdes T, Maahr J, et al. Deletions below 10 megabasepairs are detected in comparative genomic hybridization by standard reference intervals. Genes Chromosomes Cancer. 1999;25(4):410–3.

    Article  PubMed  CAS  Google Scholar 

  13. Solinas-Toldo S, Lampel S, Stilgenbauer S, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997;20(4):399–407.

    Article  PubMed  CAS  Google Scholar 

  14. Cheung SW, Shaw CA, Yu W, et al. Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet Med. 2005;7(6):422–32.

    Article  PubMed  Google Scholar 

  15. Shaffer LG, Kashork CD, Saleki R, et al. Targeted genomic microarray analysis for identification of chromosome abnormalities in 1500 consecutive clinical cases. J Pediatr. 2006;149(1):98–102.

    Article  PubMed  CAS  Google Scholar 

  16. Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20(2):207–11.

    Article  PubMed  CAS  Google Scholar 

  17. Pollack JR, Perou CM, Alizadeh AA, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet. 1999;23(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  18. Koolen DA, Vissers LE, Pfundt R, et al. A new chromosome 17q21.31 microdeletion ­syndrome associated with a common inversion polymorphism. Nat Genet. 2006;38(9):999–1001.

    Article  PubMed  CAS  Google Scholar 

  19. Sharp AJ, Hansen S, Selzer RR, et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet. 2006;38(9):1038–42.

    Article  PubMed  CAS  Google Scholar 

  20. Shaw-Smith C, Pittman AM, Willatt L, et al. Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat Genet. 2006;38(9):1032–7.

    Article  PubMed  CAS  Google Scholar 

  21. Varela MC, Krepischi-Santos AC, Paz JA, et al. A 17q21.31 microdeletion encompassing the MAPT gene in a mentally impaired patient. Cytogenet Genome Res. 2006;114(1):89–92.

    Article  PubMed  CAS  Google Scholar 

  22. Sharp AJ, Mefford HC, Li K, et al. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet. 2008;40(3):322–8.

    Article  PubMed  CAS  Google Scholar 

  23. Sharp AJ, Selzer RR, Veltman JA, et al. Characterization of a recurrent 15q24 microdeletion syndrome. Hum Mol Genet. 2007;16(5):567–72.

    Article  PubMed  CAS  Google Scholar 

  24. Ghebranious N, Giampietro PF, Wesbrook FP, Rezkalla SH. A novel microdeletion at 16p11.2 harbors candidate genes for aortic valve development, seizure disorder, and mild mental retardation. Am J Med Genet A. 2007;143A(13):1462–71.

    Article  PubMed  CAS  Google Scholar 

  25. Shaffer LG, Bejjani BA, Torchia B, Kirkpatrick S, Coppinger J, Ballif BC. The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. Am J Med Genet C Semin Med Genet. 2007;145C(4):335–45.

    Article  PubMed  Google Scholar 

  26. Slavotinek AM. Novel microdeletion syndromes detected by chromosome microarrays. Hum Genet. 2008;124(1):1–17.

    Article  PubMed  CAS  Google Scholar 

  27. Berg JS, Potocki L, Bacino CA. Common recurrent microduplication syndromes: diagnosis and management in clinical practice. Am J Med Genet A. 2010;152A(5):1066–78.

    Article  PubMed  Google Scholar 

  28. Kallioniemi A. CGH microarrays and cancer. Curr Opin Biotechnol. 2008;19(1):36–40.

    Article  PubMed  CAS  Google Scholar 

  29. Michels E, De Preter K, Van Roy N, Speleman F. Detection of DNA copy number alterations in cancer by array comparative genomic hybridization. Genet Med. 2007;9(9):574–84.

    Article  PubMed  CAS  Google Scholar 

  30. Lai LA, Paulson TG, Li X, et al. Increasing genomic instability during premalignant neoplastic progression revealed through high resolution array-CGH. Genes Chromosomes Cancer. 2007;46(6):532–42.

    Article  PubMed  CAS  Google Scholar 

  31. Shevell M, Ashwal S, Donley D, et al. Practice parameter: evaluation of the child with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society. Neurology. 2003;60(3):367–80.

    PubMed  CAS  Google Scholar 

  32. Martin CL, Waggoner DJ, Wong A, et al. “Molecular rulers” for calibrating phenotypic effects of telomere imbalance. J Med Genet. 2002;39(10):734–40.

    Article  PubMed  CAS  Google Scholar 

  33. Flint J, Knight S. The use of telomere probes to investigate submicroscopic rearrangements associated with mental retardation. Curr Opin Genet Dev. 2003;13(3):310–6.

    Article  PubMed  CAS  Google Scholar 

  34. Ravnan JB, Tepperberg JH, Papenhausen P, et al. Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J Med Genet. 2006;43(6):478–89.

    Article  PubMed  CAS  Google Scholar 

  35. Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics. 2004;113(5):e472–86.

    Article  PubMed  Google Scholar 

  36. Jacquemont ML, Sanlaville D, Redon R, et al. Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet. 2006;43(11):843–9.

    Article  PubMed  CAS  Google Scholar 

  37. Miles JH, Takahashi TN, Bagby S, et al. Essential versus complex autism: definition of fundamental prognostic subtypes. Am J Med Genet A. 2005;135(2):171–80.

    PubMed  CAS  Google Scholar 

  38. Marshall CR, Noor A, Vincent JB, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82(2):477–88.

    Article  PubMed  CAS  Google Scholar 

  39. Weiss LA, Shen Y, Korn JM, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358(7):667–75.

    Article  PubMed  CAS  Google Scholar 

  40. Moreno-De-Luca D, Mulle JG, Kaminsky EB, et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet. 2010;87(5):618–30.

    Article  PubMed  CAS  Google Scholar 

  41. Sahoo T, Cheung SW, Ward P, et al. Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization. Genet Med. 2006;8(11):719–27.

    Article  PubMed  CAS  Google Scholar 

  42. Schaeffer AJ, Chung J, Heretis K, Wong A, Ledbetter DH, Lese Martin C. Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet. 2004;74(6):1168–74.

    Article  PubMed  CAS  Google Scholar 

  43. Vissers LE, van Ravenswaaij CM, Admiraal R, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36(9):955–7.

    Article  PubMed  CAS  Google Scholar 

  44. Wang X, Reid Sutton V, Omar Peraza-Llanes J, et al. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet. 2007;39(7):836–8.

    Article  PubMed  CAS  Google Scholar 

  45. del Castillo FJ, Rodriguez-Ballesteros M, Alvarez A, et al. A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet. 2005;42(7):588–94.

    Article  PubMed  Google Scholar 

  46. del Castillo I, Villamar M, Moreno-Pelayo MA, et al. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med. 2002;346(4):243–9.

    Article  PubMed  Google Scholar 

  47. Luzi P, Rafi MA, Wenger DA. Characterization of the large deletion in the GALC gene found in patients with Krabbe disease. Hum Mol Genet. 1995;4(12):2335–8.

    Article  PubMed  CAS  Google Scholar 

  48. Hegde MR, Chin EL, Mulle JG, Okou DT, Warren ST, Zwick ME. Microarray-based mutation detection in the dystrophin gene. Hum Mutat. 2008;29(9):1091–9.

    Article  PubMed  CAS  Google Scholar 

  49. del Gaudio D, Yang Y, Boggs BA, et al. Molecular diagnosis of Duchenne/Becker muscular dystrophy: enhanced detection of dystrophin gene rearrangements by oligonucleotide array-comparative genomic hybridization. Hum Mutat. 2008;29(9):1100–7.

    Article  PubMed  Google Scholar 

  50. Tayeh MK, Chin EL, Miller VR, Bean LJ, Coffee B, Hegde M. Targeted comparative genomic hybridization array for the detection of single- and multiexon gene deletions and duplications. Genet Med. 2009;11(4):232–40.

    Article  PubMed  CAS  Google Scholar 

  51. Boone PM, Bacino CA, Shaw CA, et al. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010;31(12):1326–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhuri R. Hegde Ph.D., FACMG .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Askree, S.H., Hegde, M.R. (2012). Array Comparative Genomic Hybridization in Cytogenetics and Molecular Genetics. In: Best, D., Swensen, J. (eds) Molecular Genetics and Personalized Medicine. Molecular and Translational Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-530-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-530-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-529-9

  • Online ISBN: 978-1-61779-530-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics