Skip to main content

Stem Cell Therapy for Bone Disorders

  • Chapter
  • First Online:
Mesenchymal Stem Cell Therapy

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 2372 Accesses

Abstract

Stem cells of various origins have shown enormous potential to enhance bone repair and regeneration. From fracture healing to bone loss, including well-known medical conditions like osteoporosis, stem cells are being applied more and more frequently. Furthermore, they are being proposed for the treatment of genetic bone disorders with satisfactory outcomes. However, key questions remain on the type of cell to use, and the isolation and expansion protocols to select. Moreover, the in vitro modification of the cells to induce a specific phenotype, enabling regeneration of new bone is being matter of extensive research. In that respect, a possibility also exists for the enhancement of vascularization during bone regeneration events by using coculture systems or endothelial-based cell therapies. It is our intention in this chapter, to bring to the reader an update on the use of stem cells to treat bone disorders. In light of that, important concepts and definitions will be presented, as well as some examples of relevant findings. Finally, clinical trials on this topic will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fröhlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G (2008) Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 3:254–264

    Article  PubMed  Google Scholar 

  2. Clines GA (2010) Prospects for osteoprogenitor stem cells in fracture repair and osteoporosis. Curr Opin Organ Transplant 15:73–78

    Article  PubMed  Google Scholar 

  3. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336

    Article  PubMed  CAS  Google Scholar 

  4. Robey PG, Boskey AL (2008) The composition of bone. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, DC, pp 32–38

    Chapter  Google Scholar 

  5. Marks SC, Odgren PR (2002) Structure and development of the skeleton. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic, London, pp 3–15

    Google Scholar 

  6. Everts V, Delaisse JM, Korper W, Jansen DC, Tigchelaar-Gutter W, Saftig P, Beertsen W (2002) The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 17:77–90

    Article  PubMed  CAS  Google Scholar 

  7. Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404

    Article  PubMed  Google Scholar 

  8. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355:S7–S21

    Article  PubMed  Google Scholar 

  9. Tanner KE (2010) Bioactive ceramic-reinforced composites for bone augmentation. J R Soc Interf 5:541–557

    Article  Google Scholar 

  10. Tanner KE (2010) Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H 224:1359–1372

    Article  PubMed  CAS  Google Scholar 

  11. Brydone AS, Meek D, Maclaine S (2010) Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H 224:1329–1343

    PubMed  CAS  Google Scholar 

  12. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D (2010) Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res 132:15–30

    PubMed  CAS  Google Scholar 

  13. Zaidi N, Nixon AJ (2007) Stem cell therapy in bone repair and regeneration. Ann N Y Acad Sci 1117:62–72

    Article  PubMed  CAS  Google Scholar 

  14. Shapiro F (2008) Bone development and its relation to fracture repair: the role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater 15:53–76

    PubMed  CAS  Google Scholar 

  15. Clarkin CE, Emery RJ, Pitsillides AA, Wheeler-Jones CP (2008) Evaluation of VEGF-mediated signaling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells. J Cell Physiol 214:537–544

    Article  PubMed  CAS  Google Scholar 

  16. Gerber HP, Ferrara N (2000) Angiogenesis and bone growth. Trends Cardiovasc Med 10:223–228

    Article  PubMed  CAS  Google Scholar 

  17. Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27

    Article  PubMed  CAS  Google Scholar 

  18. Chung UI, Kawaguchi H, Takato T, Nakamura K (2004) Distinct osteogenic mechanisms of bones of distinct origins. J Orthop Sci 9:410–414

    Article  PubMed  CAS  Google Scholar 

  19. Schmid J, Wallkamm B, Hämmerle CH, Gogolewski S, Lang NP (1997) The significance of angiogenesis in guided bone regeneration: a case report of a rabbit experiment. Clin Oral Implants Res 8:244–248

    Article  PubMed  CAS  Google Scholar 

  20. Tarkka T, Sipola A, Jämsä T, Soini Y, Ylä-Herttuala S, Tuukkanen J, Hautala T (2003) Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues. J Gene Med 5:560–566

    Article  PubMed  CAS  Google Scholar 

  21. Chen RR, Silva EA, Yuen WW, Mooney DJ (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24:258–264

    Article  PubMed  Google Scholar 

  22. Zisch AH, Lutolf MP, Hubbell JA (2003) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12:295–310

    Article  PubMed  CAS  Google Scholar 

  23. Grellier M, Bordenave L, Amédée J (2009) Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol 27:562–571

    Article  PubMed  CAS  Google Scholar 

  24. Schumann P, Tavassol F, Lindhorst D, Stuehmer C, Bormann K-H, Kampmann A, Mülhaupt R, Laschke MW, Menger MD, Gellrich N-C, Rücker M (2009) Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo. Microvasc Res 78:180–190

    Article  PubMed  Google Scholar 

  25. Singh S, Wu BM, Dunn JCY (2011) Accelerating vascularization in polycaprolactone scaffolds by endothelial progenitor cells. Tissue Eng 17:1819–1830

    Article  CAS  Google Scholar 

  26. Erbs S, Linke A, Schachinger V, Assmus B, Thiele H, Diederich KW, Hoffmann C, Dimmeler S, Tonn T, Hambrecht R, Zeiher AM, Schuler G (2007) Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation 116:366–374

    Article  PubMed  Google Scholar 

  27. Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA (2005) A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 48:1416–1423

    Article  PubMed  Google Scholar 

  28. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937

    Article  PubMed  CAS  Google Scholar 

  29. Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Boccaletti R, Testa L, Livigni S, Fagioli F (2006) Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol Res 28:523–526

    Article  PubMed  Google Scholar 

  30. Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, Omazic B, Aschan J, Barkholt L, Le Blanc K (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81:1390–1397

    Article  PubMed  Google Scholar 

  31. Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20:263–272

    PubMed  CAS  Google Scholar 

  32. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  33. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  PubMed  CAS  Google Scholar 

  34. Mosna F, Sensebé L, Krampera M (2010) Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev 19:1449–1470

    Article  PubMed  CAS  Google Scholar 

  35. Lennon DP, Caplan AI (2006) Isolation of human marrow-derived mesenchymal stem cells. Exp Hematol 34:1604–1605

    Article  PubMed  CAS  Google Scholar 

  36. Barrilleaux B, Phinney DG, Prockop DJ, O‘Connor KC (2006) Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng 12:3007–3019

    Article  PubMed  CAS  Google Scholar 

  37. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  38. Schliephake H, Zghoul N, Jager V, van Griensven M, Zeichen J, Gelinsky M, Szubtarsky N (2009) Bone formation in trabecular bone cell seeded scaffolds used for reconstruction of the rat mandible. Int J Oral Maxillofac Surg 38:166–172

    Article  PubMed  CAS  Google Scholar 

  39. Forraz N, McGuckin CP (2011) The umbilical cord: a rich and ethical stem cell source to advance regenerative medicine. Cell Prolif 44(Suppl 1):60–69

    Article  PubMed  Google Scholar 

  40. Wolbank S, van Griensven M, Grillari-Voglauer R, Peterbauer-Scherb A (2010) Alternative sources of adult stem cells: human amniotic membrane. Adv Biochem Eng Biotechnol 123:1–27

    PubMed  CAS  Google Scholar 

  41. Balmayor ER, Feichtinger GA, Azevedo HS, van Griensven M, Reis RL (2009) Starch-poly-epsilon-caprolactone microparticles reduce the needed amount of BMP-2. Clin Orthop Relat Res 467:3138–3148

    Article  PubMed  CAS  Google Scholar 

  42. Keibl C, Fuegl A, Zanoni G, Tangl S, Wolbank S, Redl H, van Griensven M (2011) Human adipose derived stem cells reduce callus volume upon BMP-2 administration in bone regeneration. Injury 42:814–820

    Article  PubMed  Google Scholar 

  43. Shen HC, Peng H, Usas A, Gearhart B, Fu FH, Huard J (2004) Structural and functional healing of critical-size segmental bone defects by transduced muscle-derived cells expressing BMP4. J Gene Med 6:984–991

    Article  PubMed  CAS  Google Scholar 

  44. Meinel L, Hofmann S, Betz O, Fajardo R, Merkle HP, Langer R, Evans CH, Vunjak-Novakovic G, Kaplan DL (2006) Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials 27:4993–5002

    Article  PubMed  CAS  Google Scholar 

  45. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039

    PubMed  CAS  Google Scholar 

  46. Wall ME, Bernacki SH, Loboa EG (2007) Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng 13:1291–1298

    Article  PubMed  CAS  Google Scholar 

  47. Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23:1357–1366

    Article  PubMed  CAS  Google Scholar 

  48. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  PubMed  CAS  Google Scholar 

  49. Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J (2001) Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 344:1511–1514

    Article  PubMed  CAS  Google Scholar 

  50. Hentz VR, Chang J (2001) Tissue engineering for reconstruction of the thumb. N Engl J Med 344:1547–1548

    Article  PubMed  CAS  Google Scholar 

  51. Schimming R, Schmelzeisen R (2004) Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg 62:724–729

    Article  PubMed  Google Scholar 

  52. Schmelzeisen R, Schimming R, Sittinger M (2003) Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation-a preliminary report. J Craniomaxillofac Surg 31:34–39

    Article  PubMed  Google Scholar 

  53. Ueda M, Yamada Y, Ozawa R, Okazaki Y (2005) Clinical case reports of injectable tissue engineered bone for alveolar augmentation with simultaneous implant placement. Int J Periodontics Restorat Dent 25:129–137

    Google Scholar 

  54. Kasow K (2008) Treatment of severe osteogenesis imperfecta by allogeneic bone marrow transplantation. St. Jude Children’s Research Hospital. www.clinicaltrials.gov, NCT00705120

  55. Kasow K (2011) Stem cell transplantation for children affected with osteopetrosis. St. Jude Children’s Research Hospital. www.clinicaltrials.gov, NCT00145587

  56. Orchard P (2011) Reduced intensity allotransplant for osteopetrosis. Masonic Cancer Center, University of Minnesota. www.clinicaltrials.gov, NCT00638820

  57. Orchard P (2011) Allogeneic transplantation for severe osteopetrosis. Masonic Cancer Center, University of Minnesota. www.clinicaltrials.gov, NCT00775931

  58. Hamidieh AA (2011) Hematopoietic Stem Cell Transplantation for Malignant Infantile Osteopetrosis. Tehran University of Medical Sciences. www.clinicaltrials.gov, NCT01087398

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Rosado Balmayor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balmayor, E.R., van Griensven, M. (2013). Stem Cell Therapy for Bone Disorders. In: Chase, L., Vemuri, M. (eds) Mesenchymal Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-200-1_6

Download citation

Publish with us

Policies and ethics