Skip to main content
  • 715 Accesses

Abstract

Atrial and ventricular action potential gradients at phase 0 upstroke initiate propagating wave fronts during cardiac excitation that generate sequentially the P and QRS waves of the electrocardiogram (ECG). Ventricular excitation follows atrial excitation after a delay in the atrioventricular (AV) node and conduction time through the His-Purkinje network. This delay permits completion of atrial contraction and ventricular filling before ventricular contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eifler WJ, Macchi E, Ritsema van Eck HJ et al. Mechanism of generation of body surface electrocardiographic P-waves in normal, middle, and lower sinus rhythms. Circ Res 1981;48:168–82.

    PubMed  CAS  Google Scholar 

  2. Marriott HJL, Boudreau MH. Advanced Concepts in Arrhythmias. St. Louis, Toronto, London: C.V. Mosby Company, 1983.

    Google Scholar 

  3. Tawara S. Das Reizleitungssystem des Saugetierherzens. Eine anatomisch-histologische Studie über das Atrioventrikularbündel und die Purkinjeschen Fäden. Jena: Gustav Fischer Ferlag, 1906.

    Google Scholar 

  4. His W Jr. Die Tätigkeit des embryonalen Herzens und deren Bedeutung für die Lehre von den Bewegungen beim Erwachenen. Arkiv medizinishe Klinik Leipzig 1893;20:14–50.

    Google Scholar 

  5. Purkinje JE. Mikroskopisch neurologische Beobachtungen. Archiv für Anatomie, Physiologie und wischenshaftliche Medicin 1845;12:281.

    Google Scholar 

  6. Rosenbaum MB. The hemiblocks: diagnostic criteria and clinical significance. Mod Concepts Cardiovasc Dis 1970;39:141–6.

    PubMed  CAS  Google Scholar 

  7. Demoulin JC, Kulbertus HE. Histopathological examination of concept of left hemiblock. Br Heart J 1972;34:807–14.

    PubMed  CAS  Google Scholar 

  8. Demoulin JC, Kulbertus HE. Pathological findings in patients with left anterior hemiblock. In: Hoffman I (ed). Vectorcardiography 3. Amsterdam, Oxford: North Holland Publishing Company, 1976, pp 123–7.

    Google Scholar 

  9. Durrer D, van Dam R Th, Freud GE et al. Total excitation of the isolated human heart. Circulation 1970;41:899–912.

    PubMed  CAS  Google Scholar 

  10. Taccardi B. Distribution of heart potentials on the thoracic surface of normal human subjects. Circ Res 1963;12:341–52.

    PubMed  CAS  Google Scholar 

  11. Horáček BM, Warren JW, Feild DQ et al. Statistical and deterministic approaches to designing transformations of electrocardiographic leads. J Electrocardiol 2002;35(Suppl):41–52.

    PubMed  Google Scholar 

  12. van Oosterom A, Oostendorp TF. ECGSIM: an interactive tool for studying the genesis of QRST waveforms. Heart 2004;90(2):165–8.

    Article  PubMed  Google Scholar 

  13. Huiskamp GJM, van Oosterom A. The depolarization sequence of the human heart surface potentials computed from measured body surface potentials. IEEE Trans Biomed Eng 1988;35:1047–58.

    Article  PubMed  CAS  Google Scholar 

  14. Rautaharju PM, Blackburn H, Warren J, Menotti A. Waveform patterns in the Frank-lead rest and exercise electrocardiograms of healthy elderly men. Circulation 1973;48:541–8.

    PubMed  CAS  Google Scholar 

  15. Sicouri S, Antzelovitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle: the M cell. Circ Res 1991;68:1729–41.

    PubMed  CAS  Google Scholar 

  16. Yan GX, Shimizu W, Antzelocitch C. Characteristics and distribution of M cells in artificially-perfused canine left ventricular preparations. Circulation 1998;98:1921–7.

    PubMed  CAS  Google Scholar 

  17. Antzelovitch C, Zygmunt AC, Dumaine R. Electrophysiology and pharmacology of ventricular repolarization. In: Gussak I, Antzelovich C (eds). Cardiac Repolarization. Bridging Basic and Clinical Science. Totowa, New Jersey: Humana Press, 2002, pp 63–89.

    Google Scholar 

  18. Taggart P, Sutton PMI, Opthol T et al. Transmural repolarization in the left ventricle in humans during normoxia and ischemia. Cardiovasc Res 2001;50:454–62.

    Article  PubMed  CAS  Google Scholar 

  19. Antzelevitch C, Sicouri S. Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. Role of M cells in the generation of U waves, triggered activity and torsades de pointes. J Am Coll Cardiol 1994;23:259–77.

    Article  PubMed  CAS  Google Scholar 

  20. RitZsema van Eck HJ, Kors JA, van Herpen G. The U wave in the ECG: a new view on its genesis. Int J Bioelectromagnetism 2003;5:309–11.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2007). Cardiac Excitation and Repolarization. In: Investigative Electrocardiography in Epidemiological Studies and Clinical Trials. Springer, London. https://doi.org/10.1007/978-1-84628-481-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-481-6_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-465-6

  • Online ISBN: 978-1-84628-481-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics