Skip to main content

Nuclear Cardiology

  • Chapter
Cardiovascular Medicine

Abstract

Briefly, the underlying physiological principles of stress-rest perfusion imaging are as follows: at rest, coronary flow is normal even in the presence of a narrowing of up to 85% diameter stenosis (Fig. 6.1).1 Stress, usually in the form of dynamic exercise or vasodilatation, results in an increase in coronary flow. In a normal coronary artery, flow increases 2- to 2.5-fold with dynamic exercise or by three- to fourfold with maximal coronary vasodilation.26 However, the increase in flow in a stenosed coronary is attenuated. Despite an increase in flow proximally, there is an increase in the pressure gradient across the stenosis, resulting in a drop in pressure and flow distal to the stenosis. This causes a heterogeneous distribution of blood flow during stress, with a greater increase in myocardial perfusion in the area subtended by the normal coronary artery relative to the myocardium supplied by the stenotic artery. In certain circumstances, coronary flow may actually decrease distal to the stenosis, resulting in subendocardial ischemia. This phenomenon of myocardial steal may occur in two circumstances. In the presence of a severe coronary stenosis, the coronary pressure distal to the stenosis may decrease enough during stress that it is insufficient to perfuse the endocardium, resulting in subendocardial ischemia despite an increase in total flow in the proximal epicardial artery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974;33:87–94.

    Article  PubMed  CAS  Google Scholar 

  2. Holmberg S, Serzysko W, Varnauskas E. Coronary circulation during heavy exercise in control subjects and patients with coronary heart disease. Acta Med Scand 1971;190:465–480.

    Article  PubMed  CAS  Google Scholar 

  3. Heiss HW, Barmeyer J, Wink K, et al. Studies on the regulation of myocardial bloodflow in man: training effects on bloodflow and metabolism of the healthy heart at rest and during standardized heavy exercise. Basic Res Cardiol 1976;71:658–675.

    Article  PubMed  CAS  Google Scholar 

  4. Ferguson RJ, Cote P, Gauthier P, Bourassa MG. Changes in exercise coronary sinus blood flow with training in patients with angina pectoris. Circulation 1978;58:41–47.

    PubMed  CAS  Google Scholar 

  5. Wilson RF, Laughlin DE, Ackell PH, et al. Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 1985;72:82–92.

    PubMed  CAS  Google Scholar 

  6. Rossen JD, Simonetti I, Marcus ML, Winniford MD. Coronary dilation with standard dose dipyridamole and dipyridamole combined with handgrip. Circulation 1989;79:566–572.

    PubMed  CAS  Google Scholar 

  7. Gould KL. PET perfusion imaging and nuclear cardiology. J Nucl Med 1991;32:579–606.

    PubMed  CAS  Google Scholar 

  8. Gould KL. Cardiac PET—state of the art. Circulation 1991;84(suppl):1-22–1-36.

    Google Scholar 

  9. Gould KL. Percent coronary stenosis: Battered gold standard, pernicious relic, or clinical practicality? J Am Coll Cardiol 1988;11:886–888.

    PubMed  CAS  Google Scholar 

  10. Marcus ML, Skorton DJ, Johnson MR, Collins SM, Harrison DG, Kerber RE. Visual estimates of percent diameter coronary stenosis: “a battered gold standard.” J Am Coll Cardiol 1988;41:882–885.

    Google Scholar 

  11. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984;310:819–824.

    Article  PubMed  CAS  Google Scholar 

  12. Marcus ML, Harrison DG, White CW, McPherson DD, Wilson RF, Kerber RE. Assessing the physiologic significance of coronary obstructions in patients: Importance of diffuse undetected atherosclerosis. Prog Cardiol Dis 1988;31:39–56.

    Article  CAS  Google Scholar 

  13. Seiler C, Kirkeeide RL, Gould KL. Basic structure-function of the epicardial coronary vascular tree—the basis of quantitative coronary arteriography for diffuse coronary artery disease. J Clin Invest 1992;85:1987–2003.

    CAS  Google Scholar 

  14. Gould KL. Identifying and measuring the severity of coronary artery stenosis: quantitative coronary arteriography and positron emission tomography. Circulation 1988;68:237.

    Google Scholar 

  15. Gould KL. Quantitation of coronary stenosis in vivo. Circ Res 1985;57:341.

    PubMed  CAS  Google Scholar 

  16. Kirkeeide RL, Gould KL, Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation, VII: validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol 1986;7:103.

    PubMed  CAS  Google Scholar 

  17. Gould KL. Coronary Artery Stenosis. New York. Elsevier Scientific, 1990.

    Google Scholar 

  18. Gould KL, Kirkeeide R, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity, part I: relative and absolute coronary flow reserve during changing aortic pressure, part II: determination from the arteriographic stenosis dimensions under standardized conditions. J Am Coll Cardiol 1990;15:459.

    PubMed  CAS  Google Scholar 

  19. McCall D, Zimmer LJ, Katy AM. Kinetics of thallium exchange in cultured rat cells. Circ Res 1985;56:370–376.

    PubMed  CAS  Google Scholar 

  20. Weich HF, Strauss HW, Pitt B. Extraction of thallium-201 by the myocardium. Circulation 1977;56:188–191.

    PubMed  CAS  Google Scholar 

  21. Goldhaber SZ, Newell JB, Alpert NM, Andrews E, Pohost GM, Ingwall JS. Effects of ischemic-like insult on myocardial thallium-201 accumulation. Circulation 1983;67:778–786.

    PubMed  CAS  Google Scholar 

  22. Leppo JA, MacNeil PB, Moring AF, Apstein CS. Separate effects of ischemia, hypoxia and contractility on thallium-201 kinetics in rabbit myocardium. J Nucl Med 1986;27:66–74.

    PubMed  CAS  Google Scholar 

  23. Pohost GM, Alpert NS, Ingwall JS, Strauss HW. Thallium redistribution: mechanisms and clinical utility. Semin Nucl Med 1980;20:70–93.

    Article  Google Scholar 

  24. Leppo JA. Myocardial uptake of thallium and rubidium during alterations in perfusion and oxygenation in isolated rabbit hearts. J Nucl Med 1987;28:878–885.

    PubMed  CAS  Google Scholar 

  25. Strauss HW, Harrison K, Langan VK, Lebowitz E, Pitt B. Thallium-201 for myocardial imaging: relation of thallium-201 to regional myocardial perfusion. Circulation 1975;51:641–645.

    PubMed  CAS  Google Scholar 

  26. Chu A, Murdock RH, Cobb FR. Relationship between regional distribution of thallium-201 and myocardial blood flow in normal, acutely ischemic and infarcted myocardium. Am J Cardiol 1982;50:1141–1144.

    Article  PubMed  CAS  Google Scholar 

  27. Nielsen AP, Morris KG, Murdock RH, Bruno FP, Cobb FR. Linear relationship between the distribution of thallium-201 and blood flow in ischemic and nonischemic myocardium during exercise. Circulation 1980;61:797–801.

    PubMed  CAS  Google Scholar 

  28. Pohost GM, Okada RD, O’Keefe DD, et al. Thallium redistribution in dogs with severe coronary artery stenosis of fixed caliper. Circ Res 1981;48:439–446.

    PubMed  CAS  Google Scholar 

  29. Gewirtz H, O’Keefe DD, Pohost GM, Strauss HW, McIlduff JB, Daggett WM. The effect of ischemia on thallium-201 clearance from the myocardium. Circulation 1978;58:216–219.

    Google Scholar 

  30. Kaul S, Chester DA, Pohost GM, Strauss HW, Okada RD, Boucher CA. Influence of peak exercise heart rate on normal thallium-201 myocardial clearance. J Nucl Med 1986:2726–2730.

    Google Scholar 

  31. Brunken R, Tillisch J, Schwaiger M, et al. Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q wave infarctions: evidence for persistence of viable tissue in infarct regions by positron emission tomography. Circulation 1986;73:951–963.

    PubMed  CAS  Google Scholar 

  32. Brunken R, Schwaiger M, Grover-McKay M, Phelps ME, Tillisch J, Schelbert HR. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 1987;10:557–567.

    PubMed  CAS  Google Scholar 

  33. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron emission tomography. N Engl J Med 1986;314:884–888.

    Article  PubMed  CAS  Google Scholar 

  34. Dilsizian V, Rocco TP, Freedman NM, Leon M, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–146.

    Article  PubMed  CAS  Google Scholar 

  35. Dilsizian V, Smeltzer WR, Freedman NM, Dextras R, Bonow RO. Thallium reinjection after stress-reinjection imaging: does 24 hour delayed imaging after reinjection enhance detection of viable myocardium? Circulation 1991;83:1247–1255.

    PubMed  CAS  Google Scholar 

  36. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: comparison of thallium scintigraphy with reinjection and PET imaging with 18F-Fluorodeoxyglucose. Circulation 1991;83:26–37.

    PubMed  CAS  Google Scholar 

  37. Perrone-Filardi P, Bacharach SL, Dilizian V, Maurea S, Frank JA, Bonow RO. Regional left ventricular wall thickening: relation to regional uptake of 18Fluorodeoxyglucose and 201Tl in patients with chronic coronary artery disease. Circulation 1992;86:1125–1137.

    PubMed  CAS  Google Scholar 

  38. Kitsiou AN, Srinivasan G, Quyyumi AA, et al. Stress-induced reversible and mild-to-moderate irreversible thallium defects: are they equally accurate for predicting recovery of regional left ventricular function after revascularization? Circulation 1998;98:501–508.

    PubMed  CAS  Google Scholar 

  39. Kahn JK, McGhie AI, Akers MS, et al. Quantitative rotational tomography with 201Tl and 99mTc 2-methoxy-isobutyl-isonitrile. A direct comparison in normal individuals and patients with coronary artery disease. Circulation 1989;79:1282–1293.

    PubMed  CAS  Google Scholar 

  40. Leppo JA, DePuey EG, Johnson LL. A review of cardiac imaging with sestamibi and teboroxime. J Nucl Med 1991;32:2012–2022.

    PubMed  CAS  Google Scholar 

  41. Leppo JA, Meerdink DJ. Comparative myocardial extraction of two technetium-labeled BATO derivatives (SQ30217, SQ32014) and thallium. J Nucl Med 1990;31:67–74.

    PubMed  CAS  Google Scholar 

  42. Gray WA, Gewirtz H. Comparison of 99mTc-Teboroxime with thallium for myocardial imaging in the presence of a coronary stenosis. Circulation 1991;84:1796–1807.

    PubMed  CAS  Google Scholar 

  43. Stewart RE, Heyl B, O’Rourke RA, Blumhardt R, Miller DD. Demonstration of differential post-stenotic myocardial technetium-99m teboroxime clearance kinetics after experimental ischemia and hyperemic stress. J Nucl Med 1991;32:2000–2008.

    PubMed  CAS  Google Scholar 

  44. Beanlands R, Muzik O, Nguyen N, Petry N, Schwaiger M. The relationship of the myocardial retention of technetium-99m teboroxime and myocardial blood flow. J Am Coll Cardiol 1992;20:712–719.

    PubMed  CAS  Google Scholar 

  45. Fleming RM, Kirkeeide RL, Taegtmeyer H, Adyanthaya A, Cassidy DB, Goldstein RA. Comparison of technetium-99m teboroxime and thallium-201 tomography with automated coronary arteriography and thallium tomographic imaging. J Am Coll Cardiol 1991;17:1297–1302.

    PubMed  CAS  Google Scholar 

  46. Beller GA, Sinusas AJ. Experimental studies of the physiologic properties of technetium-99m isonitriles. Am J Cardiol 1990;66:5E–8E.

    Article  PubMed  CAS  Google Scholar 

  47. Beanlands RS, Dawood F, Wen WH, et al. Are the kinetics of Technetium-99m methoxyisobutyl isonitrile affected by cell metabolism and viability? Circulation 1990;82:1802–1814.

    PubMed  CAS  Google Scholar 

  48. Carvalho PA, Chui ML, Kronauge JF, et al. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. J Nucl Med 1992;33:1516–1522.

    PubMed  CAS  Google Scholar 

  49. Kiat H, Maddahi J, Roy L, Friedman J, Berman DS. Comparison of Tc-99m-methoxyisobutyl isonitrile with Tl-201 imaging by planar and SPECT techniques for assessment of coronary disease. Am Heart J 1989;117:1–11.

    Article  PubMed  CAS  Google Scholar 

  50. Heller GV, Stowers SA, Hendel RC, et al. Clinical value of acute rest technetium-99m tetrofosmin tomographic myocardial perfusion imaging in patients with acute chest pain and nondiagnostic electrocardiograms. J Am Coll Cardiol 1998;31:1011–1017.

    Article  PubMed  CAS  Google Scholar 

  51. BilO’Deau L, Theroux P, Gregoire J, et al. Technetium-99m sestamibi tomography in patients with spontaneous chest pain: correlations with clinical, electrocardiographic and angiographic findings. J Am Coll Cardiol 1991;18:1684–1691.

    CAS  Google Scholar 

  52. Varetto T, Cantalupi D, Altieri A, et al. Emergency room technetium-99m sestamibi imaging to rule out acute myocardial ischemic events in patients with nondiagnostic electrocardiograms. J Am Coll Cardiol 1993;22:1804–1808.

    PubMed  CAS  Google Scholar 

  53. Duca MD, Giri S, Wu AH, et al. Comparison of acute rest myocardial perfusion imaging and serum markers of myocardial injury in patients with chest pain syndromes. J Nucl Cardiol 1999;6:570–576.

    Article  PubMed  CAS  Google Scholar 

  54. Verani MS, Jeroudi MO, Mahmarian JJ, et al. Quantification of myocardial infarction during coronary occlusion and myocardial salvage after reperfusion using cardiac imaging with technetium-99m hexakis 2-methoxy isobutyl isonitrile. J Am Coll Cardiol 1988;12:1573–1581.

    PubMed  CAS  Google Scholar 

  55. Sinusas AJ, Trautman KA, Bergin JD, et al. Quantification of area at risk during coronary occlusion and degree of myocardial salvage after reperfusion with technetium-99m methoxyisobutyl isonitrile. Circulation 1990;82:1424–1437.

    PubMed  CAS  Google Scholar 

  56. Germano G, Kiat H, Kavanagh PB, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138–2147.

    PubMed  CAS  Google Scholar 

  57. DePuey EG, Rozanski A. Using gated technetium-99m sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 1995;36:952–955.

    PubMed  CAS  Google Scholar 

  58. Berman DS, Kiat HS, Van Train KF, et al. Myocardial perfusion imaging with technetium-99m-sestamibi: comparative analysis of available imaging protocols. J Nucl Med 1994;35:681–688.

    PubMed  CAS  Google Scholar 

  59. Younes A, Songadele JA, Maublant J, et al. Mechanism of uptake of technetium-tetrofosmin. II: uptake into isolated adult rat heart mitochondria [published erratum appears in J Nucl Cardiol 1995;2:560]. J Nucl Cardiol 1995;2:327–333.

    Article  PubMed  CAS  Google Scholar 

  60. Platts EA, North TL, Pickett RD, Kelly JD. Mechanism of uptake of technetium-tetrofosmin. I: uptake into isolated adult rat ventricular myocytes and subcellular localization [published erratum appears in J Nucl Cardiol 1995;2:560]. J Nucl Cardiol 1995;2:316–326.

    Article  Google Scholar 

  61. Kelly JD, Forster AM, Higley B, et al. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med 1993;34:222–227.

    PubMed  CAS  Google Scholar 

  62. Sinusas JA, Shi Q, Saltzberg MT, et al. Technetium-99m-tetrofosmin to assess myocardial blood flow: experimental validation in an intact canine model of ischemia. J Nucl Med 1994;35:664–671.

    PubMed  CAS  Google Scholar 

  63. Munch G, Neverve J, Matsunari I, et al. Myocardial technetium-99m-tetrofosmin and technetium-99m-sestamibi kinetics in normal subjects and patients with coronary artery disease. J Nucl Med 1997;38:428–432.

    PubMed  CAS  Google Scholar 

  64. Glover DK, Ruiz M, Yang JY, et al. Myocardial 99m-Tc-tetrofosmin uptake during adenosine-induced vasodilatation with either a critical or mild coronary stenosis: comparison with 2-1Tl and regional myocardial blood flow. Circulation 1997;96:2332–2338.

    PubMed  CAS  Google Scholar 

  65. Shanoudy H, Raggi P, Beller GA, et al. Comparison of technetium-99m-tetrofosmin and thallium-201 single-photon emission computed tomographic imaging for detection of myocardial perfusion defects in patients with coronary artery disease. J Am Coll Cardiol 1998;31:331–337.

    Article  PubMed  CAS  Google Scholar 

  66. Matsunari I, Fujino S, Taki J, et al. Comparison of defect size between thallium-201 and technetium-99m tetrofosmin myocardial single-photon emission computed tomography in patients with single-vessel coronary artery disease. Am J Cardiol 1996;77:350–354.

    Article  PubMed  CAS  Google Scholar 

  67. Tamaki N, Takahashi N, Kawamoto M, et al. Myocardial tomography using technetium-99m-tetrofosmin to evaluate coronary artery disease. J Nucl Med 1994;35:594–600.

    PubMed  CAS  Google Scholar 

  68. Rigo P, Leclercq B, Itti R, et al. Technetium-99m-tetrofosmin myocardial imaging: a comparison with thallium-201 and angiography. J Nucl Med 1994;35:587–593.

    PubMed  CAS  Google Scholar 

  69. Zaret BL, Rigo P, Wackers FJ, et al. Myocardial perfusion imaging with 99mTc tetrofosmin: comparison to 201 Tl imaging and coronary angiography in a phase III multicenter trial. Tetrofosmin International Trial Study Group [see comments]. Circulation 1995;91:313–319.

    PubMed  CAS  Google Scholar 

  70. Acampa W, Cuocolo A, Sullo P, et al. Direct comparison of technetium 99m-sestamibi and technetium 99m-tetrofosmin cardiac single photon emission computed tomography in patients with coronary artery disease. J Nucl Cardiol 1998;5:265–274.

    Article  PubMed  CAS  Google Scholar 

  71. Higginbotham MB. Cardiac performance during submaximal and maximal exercise in healthy persons. Heart Failure 1988;4:68–76.

    Google Scholar 

  72. Leppo JA. Dipyridamole-Thallium imaging: the lazy man’s stress test. J Nucl Med 1989;30:281–287.

    PubMed  CAS  Google Scholar 

  73. Beller GA. Pharmacologic stress imaging. JAMA 1991;265:633–638.

    Article  PubMed  CAS  Google Scholar 

  74. Ranhosky A, Kempthorne-Rawson J, and the Intravenous Dipyridamole Thallium Imaging Study Group. The safety of intravenous dipyridamole thallium myocardial perfusion imaging. Circulation 1990;81:1205–1209.

    PubMed  CAS  Google Scholar 

  75. Miura M, Tominago S, Hashimoto K. Potentiation of reactive hyperemia in the coronary and femoral circulation by the selective use of 2, 5-bis-(diethanolamino)-4,8-dipiperidino (5,4-d) pyrimidine. Arzneium-Forschrift 1967;17:976–979.

    CAS  Google Scholar 

  76. Kubler W, Bretschneider HJ. Competitive inhibition of catalyzed adenosine diffusion as the mechanism of coronary dilating action of a pyrimido-pyrimidine derivative. Pflugers Arch 1964;280:141–157.

    Article  Google Scholar 

  77. Afonso S, O’Brien GS. Mechanism of enhancement of adenosine action by dipyridamole and lidoflazine in dogs. Arch Int Pharmacodyn Ther 1971;194:181–196.

    PubMed  CAS  Google Scholar 

  78. Fenton RA, Bruttig SP, Rubio R, Berne RM. Effect of adenosine on calcium uptake by intact and cultured vascular smooth muscle. Am J Physiol 1987;252:H598–604.

    Google Scholar 

  79. Fredholm BB, Gustafsson LH, Hedqvist P, Sollevi A. Adenosine in the regulation of neurotransmitter release in the peripheral nervous system. In: Berne RM, Rall TW, Rubio R, eds. Regulatory Function of Adenosine. The Hague: Martinus Nijhoff, 1983:479–495.

    Google Scholar 

  80. Rovetto MJ. Myocardial nucleotide transport. Am Rev Physiol 1985;47:605–616.

    Article  CAS  Google Scholar 

  81. Hiefsen-Kadsk F, Pedersen AK. Pharmacokinetics of dipyridamole. Acta Pharmacol Toxicol 1979;44:391–399.

    Google Scholar 

  82. Fredholm BB, Persson CG. Xanthine derivatives and adenosine receptor antagonists. Eur J Pharmacol 1981;81:673–676.

    Article  Google Scholar 

  83. Wilson RF, Wychek K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation 1990;82:1595–1606.

    PubMed  CAS  Google Scholar 

  84. Christensen CW, Rosen LB, Gal RA, Haseeb M, Lassar TA, Port SC. Coronary vasodilator reserve: comparison of the effects of papaverine and adenosine on coronary flow, ventricular function, and myocardial metabolism. Circulation 1991;83:294–303.

    PubMed  CAS  Google Scholar 

  85. Verani MS, Mahmarian JJ, Hixson JB, Boyce TM, Staudacher RA. Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and Thallium-201 scintigraphy in patients unable to exercise. Circulation 1990;82:80–87.

    PubMed  CAS  Google Scholar 

  86. Coyne EP, Belvedere DA, Vande Streek PR, Weiland FL, Evans BB, Spaccavento LJ. Thallium-201 scintigraphy after intravenous infusion of adenosine compared with exercise: Thallium testing in the diagnosis of coronary artery disease. J Am Coll Cardiol 1991;17:1289–1294.

    PubMed  CAS  Google Scholar 

  87. Nishimura S, Mahmanian JJ, Boyce TM, Verani MS. Quantitative Thallium-201 single photon emission computed tomography during maximal pharmacologic coronary vasodilation with adenosine for assessing coronary artery disease. J Am Coll Cardiol 1991;18:736–745.

    PubMed  CAS  Google Scholar 

  88. Abreu A, Mahmarian JJ, Nishimura S, Boyce TM, Verani M. Tolerance and safety of pharmacologic coronary vasodilation with adenosine in association with thallium-201 scintigraphy in patients with suspected coronary artery disease. J Am Coll Cardiol 1991;18:730–735.

    PubMed  CAS  Google Scholar 

  89. Glover DK, Ruiz M, Yang JY, et al. Pharmacological stress thallium scintigraphy with 2-(cyclohexylmethylidene)hydrazinoadenosine (WRC-0470), a novel, short-acting adenosine A2A receptor agonist. Circulation 1996;94:1726–1732.

    PubMed  CAS  Google Scholar 

  90. Bertolet BD, Belardinelli L, Franco EA, et al. Selective attenuation by N-0861 (N6−endonorbornan-2-yl-9-methyladenine) of cardiac A1 adenosine receptor-mediated effects in humans. Circulation 1996;93:1871–1876.

    PubMed  CAS  Google Scholar 

  91. Udelson JE, Heller GV, Wackers FJT, et al. Randomized, controlled dose-ranging study of the selective adenosine A2A receptor agonist binodenoson for pharmacological stress as an adjunct to myocardial perfusion imaging. Circulation 2004;109:457–464.

    Article  PubMed  CAS  Google Scholar 

  92. Gould KL, Westcott RJ, Albro PC, Hamilton GW. Non-invasive assessment of coronary stenosis by myocardial imaging during pharmacologic coronary vasodilation II: clinical methodology and feasibility. Am J Cardiol 1978;41:279–287.

    Article  PubMed  CAS  Google Scholar 

  93. Casale PN, Guiney TE, Strauss HW, Boucher CA. Simultaneous low-level treadmill exercise and intravenous dipyridamole stress thallium imaging. Am J Cardiol 1988;62:799–802.

    Article  PubMed  CAS  Google Scholar 

  94. Brown G, Josephesen MA, Petersen RB, et al. Intravenous dipyridamole combined with isometric handgrip for near maximal acute increase in coronary flow in patients with coronary artery disease. Am J Cardiol 1981;48:1077–1085.

    Article  PubMed  CAS  Google Scholar 

  95. Stern S, Greenberg ID, Corne R. Effect of exercise supplementation on dipyridamole Thallium-201 image quality. J Nucl Med 1991;32:1559–1564.

    PubMed  CAS  Google Scholar 

  96. De Puey EG. Exercise supplementation of dipyridamole for myocardial perfusion imaging. J Nucl Med 1991;32:1564–1568.

    Google Scholar 

  97. Ruffolo RR. Review: the pharmacology of dobutamine. Am J Med Sci 1987;294:244–248.

    Article  PubMed  Google Scholar 

  98. Meyer SL, Curry GC, Donsky MS, Twieg DB, Parkey RW, Willerson JT. Influence of dobutamine on hemodynamics and coronary flow in patients with and without coronary artery disease. Am J Cardiol 1976;38:103–108.

    Article  PubMed  CAS  Google Scholar 

  99. Willerson JT, Hutton I, Watson JT, Platt MR, Templeton GH. Influence of dobutamine on regional myocardial bloodflow and ventricular performance during acute and chronic myocardial ischemia in dogs. Circulation 1976;53:828–833.

    PubMed  CAS  Google Scholar 

  100. McGillem MJ, Scott BS, DeBoe SF, Friedman HZ, Mancini GBJ. The effects of dopamine and dobutamine on regional function in the presence of rigid coronary stenoses and subcritical impairments of reactive hyperemia. Am Heart J 1988;115:970–977.

    Article  PubMed  CAS  Google Scholar 

  101. Fung AY, Gallagher KP, Buda AJ. The physiologic basis of dobutamine as compared with dipyridamole stress interventions in the assessment of critical coronary stenosis. Circulation 1987;76:943–951.

    PubMed  CAS  Google Scholar 

  102. Pennell DJ, Underwood SR, Swanton RH, Walker JM, Ell PJ. Dobutamine thallium myocardial perfusion tomography. J Am Coll Cardiol 1991;18:1471–1479.

    PubMed  CAS  Google Scholar 

  103. Elliot BM, Robison JG, Zellner JL, Hendrix GH. Dobutamine-201Tl imaging: assessing cardiac risks associated with vascular surgery. Circulation 1991;84(suppl 5):III-54–60.

    Google Scholar 

  104. Marwick T, Willemart B, D’Hondt AM, et al. Selection of the optimal nonexercise stress for the evaluation of ischemic regional myocardial dysfunction and malperfusion: comparison of dobutamine and adenosine using echocardiography and 99mTc-MIBI single photon emission computed tomography. Circulation 1993;87:345–354.

    PubMed  CAS  Google Scholar 

  105. Hays JT, Mahmarian JJ, Cochran AJ, et al. Dobutamine thallium-201 tomography for evaluating patients with suspected coronary disease unable to undergo exercise or vasodilator pharmacologic stress testing. J Am Coll Cardiol 1993;21: 1583–1590.

    PubMed  CAS  Google Scholar 

  106. DePuey EG, Garcia EV. Updated Imaging Guidelines For Nuclear Cardiology Procedures, Part 1. J Nuc Cardiol 2001;8:G5–G58.

    Article  Google Scholar 

  107. Fintel DJ, Links JM, Brinker JA, Frank TL, Parker M, Becker L. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis. J Am Coll Cardiol 1989;13:600–612.

    PubMed  CAS  Google Scholar 

  108. Berman DS, Kiat H, Friedman JD, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dualisotope myocardial perfusion single-photon emission tomography: a clinical validation study. J Am Coll Cardiol 1993;22:1455–1464.

    PubMed  CAS  Google Scholar 

  109. Berman DS, Hachamovich R, Kiat H, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1995;26:639–647.

    Article  PubMed  CAS  Google Scholar 

  110. Clausen M, Bice AN, Civelek C, Hutchins GM, Wagner HN. Circumferential wall thickness measurements of the human left ventricle: reference data for thallium-201 single photon emission computed tomography. Am J Cardiol 1986;58:827–831.

    Article  PubMed  CAS  Google Scholar 

  111. Garcia EV, Van Train K, Maddahi J, et al. Quantification of rotational Thallium-201 myocardial tomography. J Nucl Med 1985;26:17–26.

    PubMed  CAS  Google Scholar 

  112. DePasquale EE, Nody AC, DePuey EG, et al. Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease. Circulation 1988;77:316–327.

    PubMed  CAS  Google Scholar 

  113. Maddahi J, Van Train K, Prigent F, et al. Quantitative single photon emission computed thallium-201 tomography for detection and localization of coronary artery disease: Optimization and prospective validation of a new technique. J Am Coll Cardiol 1989;14:1689–1699.

    PubMed  CAS  Google Scholar 

  114. DePuey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through the recognition of imaging artifacts. J Nucl Med 1989;30:441–449.

    PubMed  CAS  Google Scholar 

  115. Kiat H, Van Train KF, Friedman JD, et al. Quantitative stressredistribution imaging thallium-201 SPECT using prone imaging: methodologic development and validation. J Nucl Med 1992;33:1509–1515.

    PubMed  CAS  Google Scholar 

  116. Cooper JA, Neumann PH, McCandless BK. Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 1992;33:1566–1571.

    PubMed  CAS  Google Scholar 

  117. Matzer L, Kiat H, Friedman JD, Van Train K, Maddahi J, Berman DS. A new approach to the assessment of tomographic thallium-201 scintigraphy in patients with left bundle branch block. J Am Coll Cardiol 1991;17:1309–1317.

    PubMed  CAS  Google Scholar 

  118. Wintergreen Summary: Panel on Instrumentation and Quantification. J Nucl Cardiol 1999;6:94–103.

    Google Scholar 

  119. Germano G, Erel J, Kiat H, et al. Quantitative LVEF and qualitative regional function from gated thallium-201 perfusion SPECT. J Nucl Med 1997;38:749–754.

    PubMed  CAS  Google Scholar 

  120. Ficaro EP, Fessler JA, Shreve PD, et al. Simultaneous transmission emission myocardial perfusion: diagnostic accuracy of attenuation-corrected 99mTc-sestamibi, single-photon emission computed tomography. Circulation 1996;93:463–473.

    PubMed  CAS  Google Scholar 

  121. Ficaro EP, Fessler JA, Ackermann RJ, et al. Simultaneous transmission-emission thallium-201 cardiac SPECT: effect of attenuation correction on myocardial tracer distribution. J Nucl Med 1995;36:921–931.

    PubMed  CAS  Google Scholar 

  122. Kluge R, Sattler B, Seese A, et al. Attenuation correction by simultaneous emission-transmission myocardial single-photon emission tomography using a technetium-99m-labelled radiotracer: impact on diagnostic accuracy. Eur J Nucl Med 1997;24:1107–1114.

    PubMed  CAS  Google Scholar 

  123. Gallowitsch HJ, Sykora J, Mikosch P, et al. Attenuationcorrected thallium-201 single-photon emission tomography using a gadolinium-153 moving line source: clinical value and the impact of attenuation correction on the extent and severity of perfusion abnormalities. Eur J Nucl Med 1998;25:220–228.

    Article  PubMed  CAS  Google Scholar 

  124. Hendel RC, Berman DS, Cullom SJ, et al. Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation 1999;99:2742–2749.

    PubMed  CAS  Google Scholar 

  125. Links JM, Becker LC, Rigo P, et al. Combined corrections for attenuation, depth-dependent blur, and motion in cardiac SPECT: a multicenter trial. J Nucl Cardiol 2000;7:414–425.

    Article  PubMed  CAS  Google Scholar 

  126. Duvernoy CS, Ficaro EP, Karabajakian MZ, et al. Improved detection of left main coronary artery disease with attenuationcorrected SPECT. J Nucl Cardiol 2000;7:639–648.

    Article  PubMed  CAS  Google Scholar 

  127. Klocke FJ, Baird MG, Bateman TM, et al. AHA/AHA/ASNC Guidelines for the Clinical Use of Cardiac Radionuclide Imaging. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. http://www.acc.org/clinical/guidelines/radio/rni_fulltext.pdf, accessed April 16, 2005.

    Google Scholar 

  128. Hendel RC, Corbett JR, Cullom SJ, et al. The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol 2002;9:135–143.

    Article  PubMed  Google Scholar 

  129. Bacharach SL. The new-generation positron emission tomography/computed tomographic scanners: implications for cardiac imaging. J Nucl Cardiol 2004;11:388–392.

    Article  PubMed  Google Scholar 

  130. Bergmann SR, Fox KAA, Rand AL, et al. Quantification of regional myocardial blood flow in vivo with H2 15O. Circulation 1984;70:724–728.

    PubMed  CAS  Google Scholar 

  131. Knabb RM, Fox KAA, Sobel BE, et al. Characterization of the functional significance of subcritical stenosis with H2 15O and positron emission tomography. Circulation 1985;71:1271–1282.

    PubMed  CAS  Google Scholar 

  132. Nienaber CA, Ratib O, Gambhir S, et al. A quantitative index of regional blood flow in canine myocardium derived noninvasively with N-13 ammonia and dynamic positron emission tomograph. J Am Coll Cardiol 1991;17:260–269.

    PubMed  CAS  Google Scholar 

  133. Schelbert HR, Wisenberg G, Phelps ME, et al. Non-invasive assessment of coronary stenosis by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in man with intravenous N-l3 ammonia and positron computed tomography. Am J Cardiol 1982;49:1197–1207.

    Article  PubMed  CAS  Google Scholar 

  134. Gould KL, Goldstein RA, Mullani NA. Economic analysis of clinical positron emission tomography of the heart with rubidium-82. J Nucl Med 1989;30:707–717.

    PubMed  CAS  Google Scholar 

  135. Schelbert HR, Phelps ME, Huang S, et al. N-13 ammonia as an indicator of myocardial blood flow, Circulation 1981;63:1259–1271.

    PubMed  CAS  Google Scholar 

  136. Krivokapich J, Huang SC, Selin CE, et al. Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart. Am J Physiol 1987;252:H777–H787.

    PubMed  CAS  Google Scholar 

  137. Ratib O, Phelps, ME, Huang SC, et al. Positron emission tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 1982;23:577–586.

    PubMed  CAS  Google Scholar 

  138. Schon H, Schelbert HR, Najafi A, et al. C-11-labeled palmitic acid for noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. II. Kinetics of C-11-palmitic acid in acutely ischemic myocardium. Am Heart J 1982;1103:548–561.

    Article  Google Scholar 

  139. Schelbert HR, Henze E, Schon H, et al. C-11-labeled palmitic acid for noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. III. In vivo demonstration of the effects of substrate availability on myocardial metabolism. Am Heart J 1983;105:492–504.

    Article  PubMed  CAS  Google Scholar 

  140. Sobel BE, Geltman EM Tiefenbrunn AJ, et al. Improvement of regional myocardial metabolism after coronary thrombolysis induced with tissue-type plasminogen activator or streptokinase. Circulation 1984;69:983–990.

    PubMed  CAS  Google Scholar 

  141. Bergmann SR, Lerch RA, Fox KAA, et al. Temporal dependence of beneficial effects of coronary thrombolysis characterized by positron emission tomography. Am J Med 1982;73:573–581.

    Article  PubMed  CAS  Google Scholar 

  142. Knabb RM, Bergmann SR, Fox KAA, et al. The temporal pattern of recovery of myocardial perfusion and metabolism delineated by positron emission tomography following coronary thrombolysis. J Nucl Med 1987;28:1563–1570.

    PubMed  CAS  Google Scholar 

  143. Schelbert HR, Henze E, Schon H, et al. C-11-labeled palmitic acid for noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. III. In vivo demonstration of the effects of substrate availability on myocardial metabolism. Am Heart J 1983;105:492–504.

    Article  PubMed  CAS  Google Scholar 

  144. Schon H, Schelbert HR, Najafi A, et al. C-11-labeled palmitic acid for noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. II. Kinetics of C-11-palmitic acid in acutely ischemic myocardium. Am Heart J 1982;1103:548–561.

    Article  Google Scholar 

  145. Brown M, Myears D, Bergmann S. Validity of estimates of myocardial oxidative metabolism with carbon-11-acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 1989;30:187–193.

    PubMed  CAS  Google Scholar 

  146. Brown M, Marshall D, Sobel B. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76:687–696.

    PubMed  CAS  Google Scholar 

  147. Brown M, Myears D, Bergmann S. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11-acetate and positron emission tomography. J Am Coll Cardiol 1988;12:1054–1063.

    PubMed  CAS  Google Scholar 

  148. Walsh M, Geltman E, Brown M, et al. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11-acetate in patients with myocardial infarction. J Nucl Med 1989;30:1798–1808.

    PubMed  CAS  Google Scholar 

  149. Buxton DB, Nienaber CA, Luxen A, et al. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1–11C] acetate and dynamic positron emission tomography. Circulation 1989;79:134–142.

    PubMed  CAS  Google Scholar 

  150. Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1–11C] acetate kinetics as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 1990;81:1594–1605.

    PubMed  CAS  Google Scholar 

  151. Lear JL. Relationship between myocardial clearance rates of carbon-11-acetate-derived radiolabeled and oxidative metabolism: physiologic basis and clinical significance (editorial). J Nucl Med 1991;32:1957–1060.

    PubMed  CAS  Google Scholar 

  152. McCord ME, Bacharach SL, Bonow RO, Dilsizian V, Cuocolo A, Freedman N. Misalignment between PET transmission and emission scans: its effect on myocardial imaging. J Nucl Med 1992;33:1209–1213.

    PubMed  CAS  Google Scholar 

  153. Shelbert HR, Wisenberg G, Phelps ME, et al. Non-invasive assessment of coronary artery stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation: VI. Detection of coronary artery disease in human beings with intra-venous N-13 ammonia and positron emission tomography. Am J Cardiol 1982;49:1197–1201.

    Article  Google Scholar 

  154. Tamaki N, Yonekura Y, Senda M, et al. Value and limitation of stress 201Tl single photon emission tomography: comparison with nitrogen-13 ammonia positron emission tomography. J Nucl Med 1988;29:1181–1188.

    PubMed  CAS  Google Scholar 

  155. Demer LL, Gould KL, Goldstein RA, et al. Assessment of coronary artery disease severity by positron emission tomography: comparison with quantitative coronary arteriography in 193 patients. Circulation 1989;79:825–835.

    PubMed  CAS  Google Scholar 

  156. Go RT, Marwick TH, MacIntyre WJ, et al. A prospective comparison of rubidium-82 PET and thallium-210 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990;31:1899–1905.

    PubMed  CAS  Google Scholar 

  157. Stewart RE, Schwaiger M, Molina E, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991;67:1303–1310.

    Article  PubMed  CAS  Google Scholar 

  158. Bonow RO, Berman DS, Gibbons RJ, et al. Cardiac positron emission tomography: a report for health professionals from the Committee on Advanced Cardiac Imaging and Technology on Clinical Cardiology, American Heart Association. Circulation 1991;84:447–454.

    PubMed  CAS  Google Scholar 

  159. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, Hertenstein GK, Moutray KL, Reid KJ, Collum SJ. Diagnostic Accuracy of Rest/Stress ECG-gated Rubidium-82 Myocardial Perfusion PET: Comparison with ECG-gated Tc-99m-Sestamibi SPECT. J Nucl Cardiol 2006;13:24–33.

    Article  PubMed  Google Scholar 

  160. Watson DD, Nelson JP, Gottlieb S. Rapid bolus injection of radioisotopes. Radiology 1973;106:347–352.

    PubMed  CAS  Google Scholar 

  161. Berger JH, Mathay RA, Pytlik LM, Gottschalk A, Zaret BL. First-pass radionuclide assessment of right and left ventricular performance in patients with cardiac and pulmonary disease. Semin Nucl Med 1979;9:275–224.

    Article  PubMed  CAS  Google Scholar 

  162. Dymond DS, Elliot AT, Flatman W, et al. The clinical validation of gold-195m: a new short half-life radiopharmaceutical for rapid, sequential, first pass angiocardiography. J Am Coll Cardiol 1983;2:85–92.

    PubMed  CAS  Google Scholar 

  163. Wackers FJ, Stein R, Pytlik L, et al. Gold-195m for serial first pass radionuclide angiocardiography during upright exercise in patients with coronary artery disease. J Am Coll Cardiol 1983;2:497–505.

    PubMed  CAS  Google Scholar 

  164. Jones RH. Radionuclide angiocardiography. In: Marcus, Schelbert, Skorton, Wolf, eds. Cardiac Imaging—Principles and Practice. Philadelphia: WB Saunders, 1991:1006–1026.

    Google Scholar 

  165. Askenazi J, Amnberg DS, Korngold E, LaFarge CG, Maltz DL, Treves S. Quantitative radionuclide angiocardiography. Am J Cardiol 1976;97:382–387.

    Article  Google Scholar 

  166. Treves S, Collins-Nakai RL. Radioactive tracers in congenital heart disease. Am J Cardiol 1976;38:711–721.

    Article  PubMed  CAS  Google Scholar 

  167. Gilday DL, DeSouza M. Pediatric nuclear cardiology. In: Come PC, ed. Diagnostic Cardiology, Noninvasive Imaging Techniques. Philadelphia: JB Lippincott, 1985:159–190.

    Google Scholar 

  168. Peter CA, Armstrong BE, Jones RH. Radionuclide quantitation of right-to-left intracardiac shunts in children. Circulation 1981;64:572–577.

    PubMed  CAS  Google Scholar 

  169. Corbett JR, Jansen DE, Lewis SE, et al. Tomographic gated blood pool radionuclide ventriculography: analysis of wall motion and left ventricular volumes in patients with coronary artery disease. J Am Coll Cardiol 1985;6:349–358.

    PubMed  CAS  Google Scholar 

  170. Gill JB, Moore RH, Tamaki N, et al. Multi-gated blood-pool tomography: new method for the assessment of left ventricular function. J Nucl Med 1986;12:1916–1924.

    Google Scholar 

  171. Maublant J, Bailly P, Mestas D, et al. Feasibility of gated single photon transaxial tomography of the cardiac blood pool. Radiology 1983;146:837–839.

    PubMed  CAS  Google Scholar 

  172. Poliner LR, Dehmer GJ, Lewis SE, Parkey RW, Blomqvist CG, Willerson JT. Left ventricular performance in normal subjects: a comparison of the responses to exercise in the upright and supine position. Circulation 1980;62:528–534.

    PubMed  CAS  Google Scholar 

  173. Manyari DE, Kostuk WJ. Left and right ventricular function at rest and during bicycle exercise in the supine and sitting positions in normal subjects and patients with coronary artery disease. Am J Cardiol 1983;51:36–42.

    Article  PubMed  CAS  Google Scholar 

  174. Freeman MR, Berman DS, Staniloff H, et al. Comparison of upright and supine bicycle exercise in the detection and evaluation of extent of coronary artery disease by equilibrium radionuclide ventriculography. Am Heart J 1981;102:182–189.

    Article  PubMed  CAS  Google Scholar 

  175. Higgenbotham MB, Morris KG, Coleman E, Cobb FR. Sexrelated differences in normal cardiac response to upright exercise. Circulation 1984;70:357–366.

    Google Scholar 

  176. Hanley PJ, Gibbons RJ, Zinsmeister AR, et al. Sex-related differences in cardiac response to supine exercise assessed by radionuclide angiography. J Am Coll Cardiol 1989;13:624–629.

    PubMed  CAS  Google Scholar 

  177. Parker JA, Secker-Walker R, Hill R, Siegel BA, Potchen EJ. A new technique for the calculation of left ventricular ejection fraction. J Nucl Med 1972;13:585–592.

    PubMed  Google Scholar 

  178. Dehmer GJ, Lewis SE, Hillis LD, et al. Nongeometric determination of left ventricular volumes from equilibrium blood pool scans. Am J Cardiol 1980;45:293–300.

    Article  PubMed  CAS  Google Scholar 

  179. Dehmer GJ, Firth BG, Hillis LD, Nicod P, Willerson JT, Lewis SE. Nongeometric determinations of right ventricular volumes from equilibrium blood pool scans. Am J Cardiol 1982;49:78–84.

    Article  PubMed  CAS  Google Scholar 

  180. Links JM, Becker LC, Shindledecker JG, et al. Measurement of absolute left ventricular volumes from gated blood pool studies. Circulation 1982;65:82–91.

    PubMed  CAS  Google Scholar 

  181. Starling MR, Dell’Italia LJ, Walsh RA, Little WC, Benedetto AR, Nusynowitz ML. Accurate estimates of absolute left ventricular volumes from equilibrium radionuclide angiographic count data using a simple geometric attenuation correction. J Am Coll Cardiol 1984;3:789–798.

    PubMed  CAS  Google Scholar 

  182. Dehmer GJ, Firth BG, Lewis SE, Willerson JT, Hillis LD. Direct measurement of cardiac output by gated equilibrium blood pool scintigraphy: validation of scintigraphic volume measurements by a non-geometric technique. Am J Cardiol 1981;47:1061–1067.

    Article  PubMed  CAS  Google Scholar 

  183. Konstam MA, Wynne J, Holman BL, Brown EJ, Neill JM, Kolowski RT. Use of equilibrium (gated) radionuclide ventriculography to quantitate left ventricular output in patients with and without left-sided valvular regurgitation. Circulation 1981;64:578–585.

    PubMed  CAS  Google Scholar 

  184. Corbett JR, Jansen DE, Lewis SE, et al. Tomographic gated blood pool radionuclide ventriculography: analysis of wall motion and left ventricular volumes in patients with coronary artery disease. J Am Coll Cardiol 1985;6:349–358.

    PubMed  CAS  Google Scholar 

  185. Rigo P, Alderson PO, Robertson RM, Becker LC, Wagner HN. Measurement of aortic and mitral regurgitation by gated blood pool scans. Circulation 1979;60:306–312.

    PubMed  CAS  Google Scholar 

  186. Nicod P, Corbett JR, Firth BG, et al. Radionuclide techniques for valvular regurgitation index: comparison in patients with normal or depressed ventricular function. J Nucl Med 1982;23:763–769.

    PubMed  CAS  Google Scholar 

  187. Makler PT, McCarthy DM, Velchik MG, Goldstein HA, Alavi A. Fourier amplitude ratio: a new way to assess valvular regurgitation. J Nucl Med 1983;24:204–207.

    PubMed  Google Scholar 

  188. Bonow RO. Radionuclide angiographic evaluation of left ventricular diastolic function. Circulation 1991;84(suppl I):I-208–I215.

    CAS  Google Scholar 

  189. Okada RD, Kirshenbaum HD, Kushner FG, et al. Observer variance in the qualitative evaluation of left ventricular wall motion and the quantitation of left ventricular ejection fraction using rest and exercise multigated blood pool imaging. Circulation 1980;61:128–136.

    PubMed  CAS  Google Scholar 

  190. Okada RD, Pohost GM, Nichols AB, et al. Left ventricular regional wall motion assessment by multigated and enddiastolic, end-systolic gated radionuclide left ventriculography. Am J Cardiol 1980;45:1211–1218.

    Article  PubMed  CAS  Google Scholar 

  191. Maddox DE, Holman BL, Wynne J, et al. Ejection fraction image: a non-invasive index of regional left ventricular wall motion. Am J Cardiol 1978;14:1230–1238.

    Article  Google Scholar 

  192. Maddox DE, Wynne J, Uren R, et al. Regional ejection fraction: a quantitative radionuclide index of regional left ventricular performance. Circulation 1979;59:1001–1009.

    PubMed  CAS  Google Scholar 

  193. Links LM, Douglass KH, Wagner HN. Patterns of ventricular emptying by Fourier analysis of gated blood-pool studies. J Nucl Med 1980;21:978–982.

    PubMed  CAS  Google Scholar 

  194. Ratib O, Henze E, Schon H, Schelbert H. Phase analysis of radionuclide ventriculograms for the detection of coronary artery disease. Am Heart J 1982;104:1–12.

    Article  PubMed  CAS  Google Scholar 

  195. Walton S, Yiannikas J, Jarritt PH, Brown NJG, Swanton RH, Ell PJ. Phasic abnormalities of left ventricular emptying in coronary artery disease. Br Heart J 1981;46:250–253.

    Article  Google Scholar 

  196. Bacharach SL, Green MV, Bonow RO, DeGraaf CN, Johnston GS. A method for objective evaluation of functional images. J Nucl Med 1982;23:285–290.

    PubMed  CAS  Google Scholar 

  197. Links JM, Raichlen JS, Wagner HN, Reid PR. Assessment of the site of ventricular activation by Fourier analysis of gated blood pool studies. J Nucl Med 1985;26:27–32.

    PubMed  CAS  Google Scholar 

  198. Botvinick E, Dunn R, Frais M, et al. The phase image: its relationship to patterns of contraction and conduction. Circulation 1982;65:551–560.

    PubMed  CAS  Google Scholar 

  199. Botvinick E, Frais M, O’Connell W, et al. Phase image evaluation of patients with ventricular pre-excitation syndromes. J Am Coll Cardiol 1984;3:799–814.

    Article  PubMed  CAS  Google Scholar 

  200. Berger JH, Mathay RA, Pytlik LM, Gottschalk A, Zaret BL. First-pass radionuclide assessment of right and left ventricular performance in patients with cardiac and pulmonary disease. Semin Nucl Med 1979;9:275–294.

    Article  PubMed  CAS  Google Scholar 

  201. Maddahi J, Berman DS, Masouka DT, et al. A new technique for assessing right ventricular ejection fraction using rapid multiple-gated equilibrium cardiac blood pool scintigraphy. Description, validation and findings in chronic coronary artery disease. Circulation 1979;60:581–589.

    PubMed  CAS  Google Scholar 

  202. Rigo P, Murray M, Taylor D, et al. Right ventricular dysfunction in patients with acute inferior infarction. Circulation 1975;32:268–274.

    Google Scholar 

  203. Slutsky R, Hooper W, Gerber K. Assessment of right ventricular function at rest and during exercise in patients with coronary heart disease: a new approach using equilibrium radionuclide ventriculography. Am J Cardiol 1980;45:63–71.

    Article  PubMed  CAS  Google Scholar 

  204. Starling MR, Dell’Italia LJ, Chaudhuri TK, Boros BL, O’Rourke RA. First transit and equilibrium radionuclide angiocardiography in patients with inferior transmural myocardial infarction: criteria for diagnosis of associated hemodynamically significant right ventricular infarction. J Am Coll Cardiol 1984;4:923–930.

    PubMed  CAS  Google Scholar 

  205. Winzelberg CG, Boucher CA, Pohost GM, et al. Right ventricular function in aortic and mitral disease: relation of gated firstpass radionuclide angiography to clinical and hemodynamic findings. Chest 1981;79:520–528.

    Article  PubMed  CAS  Google Scholar 

  206. Goldberg MJ, Mantel J, Freidin M, Ruskin R, Rubentire M. Intravenous xenon-133 for determination of radionuclide first pass right ventricular ejection fraction. Am J Cardiol 1981;47:626–630.

    Article  PubMed  CAS  Google Scholar 

  207. Martin W, Tweddel A, McGhie I, Hutton I. Gated Xenon scans for right ventricular function. J Nucl Med 1986;27:609–615.

    PubMed  CAS  Google Scholar 

  208. McGhie I, Martin W, Tweddel A, Hutton I. Assessment of right ventricular function in acute inferior myocardial infarction using 133-Xenon imaging. Int J Cardiol 1989;22:195–202.

    Article  PubMed  CAS  Google Scholar 

  209. Ham HR, Piepz A, Vandevivere J, Guillaume M, Goethals P, Lenaers A. The evaluation of right ventricular performance using krypton-81m. Clin Nucl Med 1983;8:257–260.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

McGhie, A.I., Gould, K.L., Willerson, J.T. (2007). Nuclear Cardiology. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics