Skip to main content

Neuronal Model of Decision Making

  • Chapter
Networks: From Biology to Theory

Abstract

We have built a neuronal model of decision making. Our model performs a decision based on an imperfect discrimination between highly mixed stimuli, and expresses it with a saccadic eye movement, like real living beings. We use populations of integrate-and-fire neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit N Brunel DJ (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7:237–252.

    Article  Google Scholar 

  2. Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion :a comparison of neuronal and psychophysical performance. J Neurosci 12:2331–2355.

    Google Scholar 

  3. Deng Y, Williams P, Liu F, Feng J (2003) Discriminating between different input signals via single neuron activity. J Physics A:Math and Gen 36(50):12379–12398.

    Article  MATH  Google Scholar 

  4. Feng J (2001) Is the integrate-and-fire model good enough?-A review. Neural Networks 14:955–975.

    Article  Google Scholar 

  5. Feng J, Liu F (2002) A modeling study on discrimination tasks. Biosystems 67:67–73.

    Article  Google Scholar 

  6. Gaillard B, Feng J (2005) Modelling a visual discrimination task. Neurocomputing 65–66:203–209.

    Article  Google Scholar 

  7. Gaillard B, Feng J, Buxton H (2005) Population approach to a neural discrimination task. Biol Cybernet 94(3):180–191.

    Article  Google Scholar 

  8. Gerstner W, Kistler W (2002) Spiking Neuron Models, Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  9. Glimcher PW (2003) The neurobiology of visual-saccadic decision making. Annu Rev Neurosci 26:133–179.

    Article  Google Scholar 

  10. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol (Lond) 148:574–591.

    Google Scholar 

  11. Mountcastle VB (1957) Modality and topographic properties of single neurons of cat's somatosensory cortex. J Neurophysiol 20:408–434.

    Google Scholar 

  12. Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400:233–238.

    Article  Google Scholar 

  13. Salinas E (2003) Background synaptic activity as a switch between dynamical states in a network. Neural Comput 15:1439–1475.

    Article  MATH  Google Scholar 

  14. Shadlen MN, Gold JI (2004) The neurophysiology of decision making as a window on cognition. In:Gazzaniga (ed), The Cognitive Neurosciences, 3rd ed. MIT Press, Cambridge, MA.

    Google Scholar 

  15. Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86:1916–1935.

    Google Scholar 

  16. Shadlen MN, Newsome WT (1996) Motion perception :seeing and deciding. Proc Nat Acad Sci 93:628–633.

    Article  Google Scholar 

  17. Townsend JT, Ashby F (1983) The stochastic modeling of elementary psychological processes. Cambridge University Press, Cambridge, MA.

    MATH  Google Scholar 

  18. Tuckwell H (1988) Introduction to Theoretical Neurobiology, vol. 2. Cambridge University Press, Cambridge, MA.

    Google Scholar 

  19. VanRullen R, Koch C (2003) Is perception discrete or continuous? Trends Cog Sci 7(5):207–213.

    Article  Google Scholar 

  20. Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–968.

    Article  Google Scholar 

  21. Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140–143.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Gaillard, B., Feng, J., Buxton, H. (2007). Neuronal Model of Decision Making. In: Feng, J., Jost, J., Qian, M. (eds) Networks: From Biology to Theory. Springer, London. https://doi.org/10.1007/978-1-84628-780-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-780-0_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-485-4

  • Online ISBN: 978-1-84628-780-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics