Skip to main content

Blast Injury

  • Chapter
  • First Online:
Ryan's Ballistic Trauma

Abstract

Blast injuries are an increasing problem in both military and civilian practice.1 “Blast injury” refers to the biomechanical and pathophysiological changes and the clinical syndrome resulting from exposure of the living body to detonation of high explosive. Recently published figures from the conflicts in Afghanistan and Iraq indicate that approximately 46% of combat casualties treated initially by Forward Surgical Teams had suffered injuries associated with explosions (blast injury).2 These data are broadly supported by data published from the Walter Reed Army Medical Center (in Washington) showing that 31% of US combat casualties evacuated back to this specialist hospital in the US had suffered blast injuries3. More recent data indicate a higher proportion of casualties (71%) are injured in explosions.4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson TJ, Wall DB, Stedje-Larsen ET, Clark RT, Chambers LW, Bohman HR. Predictors of mortality in close proximity blast injuries during Operation Iraqi Freedom. J Am Coll Surg. 2006;202:418-422.

    Article  PubMed  Google Scholar 

  2. Rush RM, Stockmaster NR, Stinger HK, et al. Supporting the global war on terror: a tale of two campaigns featuring the 250th Forward Surgical Team (Airborne). Am J Surg. 2005;189:564-570.

    Article  PubMed  Google Scholar 

  3. Montgomery SP, Swiecki CW, Shriver CD. The evaluation of casualties from Operation Iraqi Freedom on return to the continental United States from March to June 2003. J Am Coll Surg. 2005;201:7-12.

    Article  PubMed  Google Scholar 

  4. Ritenour AE, Blackbourne LH, Kelly JF, McLaughlin DF, Pearse LA, Holcomb JB, Wade CE. Incidence of primary blast injury in US military overseas contingency operations: a retrospective study. Ann Surg. 2010;251(6):1140-1144.

    Google Scholar 

  5. Maynard RL, Cooper GJ, Scott R. Mechanism of injury in bomb blasts and explosions. In: Westaby S, ed. Trauma. London: Heinemann; 1989.

    Google Scholar 

  6. Zuckerman S. Discussion on the problem of blast injuries. Proc Roy Soc Med. 1941;34:171-188.

    Google Scholar 

  7. Clemedson CJ. Shock wave transmission to the central nervous system. Acta Physiol Scand. 1956;37:204-214.

    Article  PubMed  CAS  Google Scholar 

  8. Belanger HG, Scott SG, Scholten J, Curtiss G, Vanderploeg RD. Utility of mechanism-of-injury-based assessment and treatment: Blast Injury Program case illustration. J Rehabil Res Dev. 2005;42:403-412.

    Article  PubMed  Google Scholar 

  9. Lew HL, Poole JH, Guillory SB, Salerno RM, Leskin G, Sigford B. Persistent problems after traumatic brain injury: the need for long-term follow-up and coordinated care – Guest Editorial. J Rehabil Res Dev. 2006;43:VII-VIX.

    Article  PubMed  Google Scholar 

  10. Okie S. Traumatic brain injury in the war zone. N Engl J Med. 2005;352:2043-2047.

    Article  PubMed  CAS  Google Scholar 

  11. Dearden P. New blast weapons. J R Army Med Corps. 2001;147:80-86.

    PubMed  CAS  Google Scholar 

  12. Chaloner E. Blast injury in enclosed spaces. BMJ. 2005;331:119-120.

    Article  PubMed  Google Scholar 

  13. Avidan V, Hersch M, Armon Y, et al. Blast lung injury: clinical manifestations, treatment, and outcome. Am J Surg. 2005;190:927-931.

    Article  PubMed  Google Scholar 

  14. de Ceballos JP, Turegano-Fuentes F, Perez-Diaz D, Sanz-Sanchez M, Martin-Llorente C, Guerrero-Sanz JE. 11 March 2004: the terrorist bomb explosions in Madrid, Spain – an analysis of the logistics, injuries sustained and clinical management of casualties treated at the closest hospital. Crit Care. 2005;9:104-111.

    Article  PubMed  Google Scholar 

  15. Marti M, Parron M, Baudraxler F, Royo A, Gomez LN, Varez-Sala R. Blast injuries from Madrid terrorist bombing attacks on March 11, 2004. Emerg Radiol. 2006;13:113-122.

    Article  PubMed  Google Scholar 

  16. Cooper GJ. Protection of the lung from blast overpressure by thoracic stress wave decouplers. J Trauma. 1996;40:S105-S110.

    Article  PubMed  CAS  Google Scholar 

  17. Cohn SM. Pulmonary contusion: review of the clinical entity. J Trauma. 1997;42:973-979.

    Article  PubMed  CAS  Google Scholar 

  18. Cooper GJ, Townend DJ, Cater SR, Pearce BP. The role of stress waves in thoracic visceral injury from blast loading: modification of stress transmission by foams and high-density materials. J Biomech. 1991;24:273-285.

    Article  PubMed  CAS  Google Scholar 

  19. Gans L, Kennedy T. Management of unique clinical entities in disaster medicine. Emerg Med Clin North Am. 1996;14:301-326.

    Article  PubMed  CAS  Google Scholar 

  20. Mellor SG. The pathogenesis of blast injury and its management. Br J Hosp Med. 1988;39:536-539.

    PubMed  CAS  Google Scholar 

  21. Argyros GJ. Management of primary blast injury. Toxicology. 1997;121:105-115.

    Article  PubMed  CAS  Google Scholar 

  22. Frykberg ER, Tepas JJ III, Alexander RH. The 1983 Beirut Airport terrorist bombing. Injury patterns and implications for disaster management. Am Surg. 1989;55:134-141.

    PubMed  CAS  Google Scholar 

  23. Katz E, Ofek B, Adler J, Abramowitz HB, Krausz MM. Primary blast injury after a bomb explosion in a civilian bus. Ann Surg. 1989;209:484-488.

    Article  PubMed  CAS  Google Scholar 

  24. Leibovici D, Gofrit ON, Stein M, et al. Blast injuries: bus versus open-air bombings – a comparative study of injuries in survivors of open-air versus confined-space explosions. J Trauma. 1996;41:1030-1035.

    Article  PubMed  CAS  Google Scholar 

  25. Brown RF, Cooper GJ, Maynard RL. The ultrastructure of rat lung following acute primary blast injury. Int J Exp Pathol. 1993;74:151-162.

    PubMed  CAS  Google Scholar 

  26. Gorbunov NV, Elsayed NM, Kisin ER, Kozlov AV, Kagan VE. Air blast-induced pulmonary oxidative stress: interplay among hemoglobin, antioxidants, and lipid peroxidation. Am J Physiol. 1997;272:L320-L334.

    PubMed  CAS  Google Scholar 

  27. Gorbunov NV, Asher LV, Ayyagari V, Atkins JL. Inflammatory leukocytes and iron turnover in experimental hemorrhagic lung trauma. Exp Mol Pathol. 2006;80:11-25.

    PubMed  CAS  Google Scholar 

  28. Gorbunov NV, Mcfaul SJ, Januszkiewicz A, Atkins JL. Pro-inflammatory alterations and status of blood plasma iron in a model of blast-induced lung trauma. Int J Immunopathol Pharmacol. 2005;18:547-556.

    PubMed  CAS  Google Scholar 

  29. Barrow DW, Rhodes HT. Blast concussion injury. JAMA. 1944;125:900-902.

    Google Scholar 

  30. Cernak I, Savic J, Malicevic Z, et al. Involvement of the central nervous system in the general response to pulmonary blast injury. J Trauma. 1996;40:S100-S104.

    Article  PubMed  CAS  Google Scholar 

  31. Clark SL, Ward JW. The effects of rapid compression waves on animals submerged in water. Surg Gynec Obstet. 1943;77:403-412.

    Google Scholar 

  32. Clemedson CJ. An experimental study of air blast injuries. Acta Physiol Scand. 1949;18:1-200.

    Article  Google Scholar 

  33. Irwin RJ, Lerner MR, Bealer JF, Brackett DJ, Tuggle DW. Cardiopulmonary physiology of primary blast injury. J Trauma. 1997;43:650-655.

    Article  PubMed  CAS  Google Scholar 

  34. Jaffin JH, McKinney L, Kinney RC, et al. A laboratory model for studying blast overpressure injury. J Trauma. 1987;27:349-356.

    Article  PubMed  CAS  Google Scholar 

  35. Guy RJ, Kirkman E, Watkins PE, Cooper GJ. Physiologic responses to primary blast. J Trauma. 1998;45:983-987.

    Article  PubMed  CAS  Google Scholar 

  36. Krohn PL, Whitteridge D, Zuckerman S. Physiological effects of blast. Lancet. 1942;i:252-258.

    Article  Google Scholar 

  37. Ohnishi M, Kirkman E, Guy RJ, Watkins PE. Reflex nature of the cardiorespiratory response to primary thoracic blast injury in the anaesthetised rat. Exp Physiol. 2001;86:357-364.

    Article  PubMed  CAS  Google Scholar 

  38. Damon EG, Yelverton JT, Luft UC, Mitchell K, Jones RK. Acute effects of air blast on pulmonary function in dogs and sheep. Aerosp Med. 1971;42:1-9.

    PubMed  CAS  Google Scholar 

  39. Irwin RJ, Lerner MR, Bealer JF, Mantor PC, Brackett DJ, Tuggle DW. Shock after blast wave injury is caused by a vagally mediated reflex. J Trauma. 1999;47:105-110.

    Article  PubMed  CAS  Google Scholar 

  40. Ohnishi M, Kirkman E, Watkins P. Effects of atropine on the bradycardia associated with primary thoracic blast injury in the anaesthetized rat. Br J Pharmacol. 1998;123:U60.

    Google Scholar 

  41. Harban FMJ, Kirkman E, Kenward CE, Watkins PE. Primary thoracic blast injury causes acute reduction in cardiac function in the anaesthetised pig. J Physiol London. 2001;533:81P.

    Google Scholar 

  42. Gorbunov NV, Das DK, Goswami SK, Gurusamy N, Atkins JL. Nitric oxide (NO), redox signaling, and pulmonary inflammation in a model of polytrauma. Proceedings of the XIII Congress of the Society for Free Radical Research International Davos, Switzerland; 2006:2-4.

    Google Scholar 

  43. Zunic G, Pavlovic R, Malicevic Z, Savic V, Cernak I. Pulmonary blast injury increases nitric oxide production, disturbs arginine metabolism, and alters the plasma free amino acid pool in rabbits during the early posttraumatic period. Nitric Oxide. 2000;4:123-128.

    Article  PubMed  CAS  Google Scholar 

  44. Zunic G, Romic P, Vueljic M, Jovanikic O. Very early increase in nitric oxide formation and oxidative cell damage associated with the reduction of tissue oxygenation is a trait of blast casualties. Vojnosanit Pregl. 2005;62:273-280.

    Article  PubMed  Google Scholar 

  45. Kirkman E, Watts S, Sapsford W, Sawdon M. Effects of blast injury on the autonomic nervous system and the response to resuscitation. In: Elsayed NM, Atkins JL, eds. Explosion and Blast-Related Injuries.: Elsevier; 2008:105-142.

    Google Scholar 

  46. Schild HH, Strunk H, Weber W, et al. Pulmonary contusion: CT vs plain radiograms. J Comput Assist Tomogr. 1989;13:417-420.

    Article  PubMed  CAS  Google Scholar 

  47. Wagner RB, Jamieson PM. Pulmonary contusion. Evaluation and classification by computed tomography. Surg Clin North Am. 1989;69:31-40.

    PubMed  CAS  Google Scholar 

  48. Gofrit ON, Kovalski N, Leibovici D, Shemer J, O’Hana A, Shapira SC. Accurate anatomical location of war injuries: analysis of the Lebanon war fatal casualties and the proposition of new principles for the design of military personal armour system. Injury. 1996;27:577-581.

    Article  PubMed  CAS  Google Scholar 

  49. Harrisson SE, Kirkman E, Mahoney P. Lessons learnt from explosive attacks. J R Army Med Corps. 2007;153:278-282.

    PubMed  CAS  Google Scholar 

  50. Pizov R, Oppenheim-Eden A, Matot I, et al. Blast lung injury from an explosion on a civilian bus. Chest. 1999;115:165-172.

    Article  PubMed  CAS  Google Scholar 

  51. Hirshberg B, Oppenheim-Eden A, Pizov R, et al. Recovery from blast lung injury – one-year follow-up. Chest. 1999;116:1683-1688.

    Article  PubMed  CAS  Google Scholar 

  52. Keren A, Stessman J, Tzivoni D. Acute myocardial infarction caused by blast injury of the chest. Br Heart J. 1981;46:455-457.

    Article  PubMed  CAS  Google Scholar 

  53. Leach RM, Davidson AC. Use of emergency oxygen in adults. Br Med J. 2009;338:366-367.

    Article  Google Scholar 

  54. Sorkine P, Szold O, Kluger Y, et al. Permissive hypercapnia ventilation in patients with severe pulmonary blast injury. J Trauma. 1998;45:35-38.

    Article  PubMed  CAS  Google Scholar 

  55. Leibovici D, Gofrit ON, Shapira SC. Eardrum perforation in explosion survivors: is it a marker of pulmonary blast injury? Ann Emerg Med. 1999;34:168-172.

    Article  PubMed  CAS  Google Scholar 

  56. Cripps NP, Cooper GJ. Risk of late perforation in intestinal contusions caused by explosive blast. Br J Surg. 1997;84:1298-1303.

    Article  PubMed  CAS  Google Scholar 

  57. Benzinger T. Physiological effects of blast in air and water. In German aviation medicine in World War II. Washington DC: US Department of the Airforce; 1950.

    Google Scholar 

  58. Clemedson CJ, Hultman HI. Air embolism and the cause of death in blast injury. Mil Surg. 1954;114:424-437.

    PubMed  CAS  Google Scholar 

  59. Zuckerman S. Experimental study of blast injuries to the lungs. Lancet. 1940;ii:219-224.

    Article  Google Scholar 

  60. Mott FW. The effects of high explosives upon the central nervous system. Lancet. 1916;i:331-338.

    Google Scholar 

  61. Clemedson CJ, Pettersson H. Genesis of respiratory and circulatory changes in blast injury. Am J Physiol. 1953;174:316-320.

    PubMed  CAS  Google Scholar 

  62. Clemedson CJ. Respiration and pulmonary gas exchange in blast injury. J Appl Physiol. 1953;6:213-220.

    PubMed  CAS  Google Scholar 

  63. Desaga H. Blast Injuries. US Department of the Airforce; 1950.

    Google Scholar 

  64. Rossle R. Pathology of blast effects. In German Aviation Medicine in World War II. Washington DC: US Department of the Airforce; 1950.

    Google Scholar 

  65. Hooker DR. Physiological effects of air concussion. Am J Physiol. 1924;67:219-273.

    Google Scholar 

  66. Robb-Smith AHT. Pulmonary fat embolism. Lancet. 1941;1:135.

    Article  Google Scholar 

  67. Cohen H, Biskind GR. Pathological aspects of atmospheric blast injuries in man. Arch Path. 1946;42:12-34.

    PubMed  CAS  Google Scholar 

  68. Horsley V. The destructive effects of projectiles. Proc R Institution. 1894;14:228-238.

    Google Scholar 

  69. Crockard HA, Brown FD, Johns LM, Mullan S. An experimental cerebral missile injury model in primates. J Neurosurg. 1977;46:776-783.

    Article  PubMed  CAS  Google Scholar 

  70. Crockard HA, Brown FD, Calica AB. Physiological consequences of experimental missile injury and the use of data analysis to predict survival. J Neurosurg. 1977;46:784-794.

    Article  Google Scholar 

  71. Carey ME, Sarna GS, Farrell JB, Happel LT. Experimental missile wound to the brain. J Neurosurg. 1989;71:754-764.

    Article  PubMed  CAS  Google Scholar 

  72. Levett JM, Johns LM, Replogle RL, Mullan S. Cardiovascular effects of experimental cerebral missile injury in primates. Surg Neurol. 1980;13:59-64.

    PubMed  CAS  Google Scholar 

  73. Sarphie TG, Carey ME, Davidson JF, Soblosky JS. Scanning electron microscopy of the floor of the fourth ventricle in rats subjected to graded impact injury to the sensorimotor cortex. J Neurosurg. 1999;90:734-742.

    Article  PubMed  CAS  Google Scholar 

  74. Sapsford W. Penetrating brain injury in military conflict: does it merit more research? J R Army Med Corps. 2003;149:5-14.

    PubMed  CAS  Google Scholar 

  75. Cooper GJ, Maynard RL, Cross NL, Hill JF. Casualties from terrorist bombings. J Trauma. 1983;23:955-967.

    Article  PubMed  CAS  Google Scholar 

  76. Barcroft H, Edholm OG, McMichael J, Sharpey-Schafer EP. Post-haemorrhage fainting. Study by cardiac output and forearm flow. Lancet. 1944;1:489-491.

    Article  Google Scholar 

  77. Little RA, Marshall HW, Kirkman E. Attenuation of the acute cardiovascular responses to haemorrhage by tissue injury in the conscious rat. Q J Exp Physiol. 1989;74:825-833.

    PubMed  CAS  Google Scholar 

  78. Secher NH, Bie P. Bradycardia during reversible haemorrhagic shock – a forgotten observation? Clin Physiol. 1985;5:315-323.

    Article  PubMed  CAS  Google Scholar 

  79. Evans RG, Ludbrook J. Chemosensitive cardiopulmonary afferents and the haemodynamic response to simulated haemorrhage in conscious rabbits. Br J Pharmacol. 1991;102:533-539.

    PubMed  CAS  Google Scholar 

  80. Little RA, Randall PE, Redfern WS, Stoner HB, Marshall HW. Components of injury (haemorrhage and tissue ischaemia) affecting cardiovascular reflexes in man and rat. Q J Exp Physiol. 1984;69:753-762.

    PubMed  CAS  Google Scholar 

  81. Hoffman RL. Rupture of the spleen. A review and report of a case following abdominal hysterectomy. Am J Obstet Gynecol. 1972;113:524-530.

    PubMed  CAS  Google Scholar 

  82. Sander-Jensen K, Secher NH, Bie P, Warberg J, Schwartz TW. Vagal slowing of the heart during haemorrhage: observations from 20 consecutive hypotensive patients. Br Med J (Clin Res Ed). 1986;292:364-366.

    Article  CAS  Google Scholar 

  83. Kirkman E, Shiozaki T, Little RA. Methiothepin antagonism does not attenuate the bradycardia associated with severe hemorrhage in the anesthetized rat. Br J Pharmacol. 1994;112:U58.

    Google Scholar 

  84. Scherrer U, Vissing S, Morgan BJ, Hanson P, Victor RG. Vasovagal syncope after infusion of a vasodilator in a heart-transplant recipient. N Engl J Med. 1990;322:602-604.

    Article  PubMed  CAS  Google Scholar 

  85. Shen YT, Knight DR, Thomas JX Jr, Vatner SF. Relative roles of cardiac receptors and arterial baroreceptors during hemorrhage in conscious dogs. Circ Res. 1990;66:397-405.

    PubMed  CAS  Google Scholar 

  86. Evans RG, Ventura S, Dampney RA, Ludbrook J. Neural mechanisms in the cardiovascular responses to acute central hypovolaemia. Clin Exp Pharmacol Physiol. 2001;28:479-487.

    Article  PubMed  CAS  Google Scholar 

  87. Sawdon M, Ohnishi M, Watkins PE, Kirkman E. The effects of primary thoracic blast injury and morphine on the response to haemorrhage in the anaesthetised rat. Exp Physiol. 2002;87:683-689.

    Article  PubMed  CAS  Google Scholar 

  88. Hodgetts TJ, Mahoney PF, Russell MQ, Byers M. ABC to < C > ABC: redefining the military trauma paradigm. Emerg Med J. 2006;23:745-746.

    Article  PubMed  CAS  Google Scholar 

  89. Committee on Trauma ACoS. Advanced Trauma Life Support (ATLS) Course for Physicians. Chicago: American College of Surgeons; 2002.

    Google Scholar 

  90. Bickell WH, Wall MJ, Pepe PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331:1105-1109.

    Article  PubMed  CAS  Google Scholar 

  91. Kowalenko T, Stern S, Dronen S, Xu W. Improved outcome with hypotensive resuscitation of uncontrolled hemorrhagic-shock in a swine model. J Trauma. 1992;33:349-353.

    Article  PubMed  CAS  Google Scholar 

  92. Stern SA. Low-volume fluid resuscitation for presumed hemorrhagic shock: helpful or harmful? Curr Opin Crit Care. 2001;7:422-430.

    Article  PubMed  CAS  Google Scholar 

  93. Battlefield Advanced Life Support. UK: Defence Medical Education and Training Agency; 2009.

    Google Scholar 

  94. Pre-hospital Initiation of Fluid Replacement Therapy in Trauma. Technology Appraisal 74, UK: NHS National Institute for Clinical Excellence; 2004.

    Google Scholar 

  95. Rafie AD, Rath PA, Michell MW, et al. Hypotensive resuscitation of multiple hemorrhages using crystalloid and colloids. Shock. 2004;22:262-269.

    Article  PubMed  Google Scholar 

  96. Bilski TR, Baker BC, Grove JR, et al. Battlefield casualties treated at Camp Rhino, Afghanistan: lessons learned. J Trauma. 2003;54:814-821.

    Article  PubMed  Google Scholar 

  97. Bohman HR, Stevens RA, Baker BC, Chambers LW. The US Navy’s forward resuscitative surgery system during operation Iraqi freedom. Mil Med. 2005;170:297-301.

    PubMed  Google Scholar 

  98. Garner J, Watts S, Parry C, Bird J, Cooper G, Kirkman E. Prolonged permissive hypotensive resuscitation is associated with poor outcome in primary blast injury with controlled hemorrhage. Ann Surg. 2010;251(6):1131-1139.

    Article  PubMed  Google Scholar 

  99. Brismar B, Bergenwald L. The terrorist bomb explosion in Bologna, Italy, 1980: an analysis of the effects and injuries sustained. J Trauma. 1982;22:216-220.

    Article  PubMed  CAS  Google Scholar 

  100. Hadden WA, Rutherford WH, Merrett JD. The injuries of terrorist bombing: a study of 1532 consecutive patients. Br J Surg. 1978;65:525-531.

    Article  PubMed  CAS  Google Scholar 

  101. Hull JB. Traumatic amputation by explosive blast: pattern of injury in survivors. Br J Surg. 1992;79:1303-1306.

    Article  PubMed  CAS  Google Scholar 

  102. Pyper PC, Graham WJ. Analysis of terrorist injuries treated at Craigavon Area Hospital, Northern Ireland, 1972-1980. Injury. 1983;14:332-338.

    Article  PubMed  CAS  Google Scholar 

  103. Rignault DP, Deligny MC. The 1986 terrorist bombing experience in Paris. Ann Surg. 1989;209:368-373.

    Article  PubMed  CAS  Google Scholar 

  104. Hill JF. Blast injuries with particular reference to recent terrorist bombing incidents. Ann RCS. 1979;61:4-11.

    CAS  Google Scholar 

  105. Waterworth TA, Carr MJT. An analysis of the post-mortem findings in the 21 victims of the Birmingham pub bombings. Injury. 1975;7:89-95.

    Article  PubMed  CAS  Google Scholar 

  106. Kirkman E, Zhang H, Spapen H, Little RA, Vincent JL. Effects of afferent neuralstimulation on critical oxygen delivery: a hemodynamic explanation. Am JPhysiol. 1995;269:R1448-54.

    Google Scholar 

  107. Eltrafi A, Kirkman E, Little RA. Reversal of injury induced reduction in baroreflex sensitivity by naloxone in the conscious rat. Br J Pharmacol. 1989;96:145.

    Google Scholar 

  108. Wyatt J, Kirkman E, Little RA. Reversal of injury induced reductions in baroreflex sensitivity by β-funaltrexamine in the anaesthetized rat. Physiol Zool. 1995;68:67.

    Google Scholar 

  109. Marshall HW, Prehar S, Kirkman E, Little RA. Morphine increases mortality after haemorrhage in the rat. J Accid Emerg Med. 1998;15:133.

    Google Scholar 

  110. Overman RR, Wang SC. The contributory role of the afferent nervous factor in experimental shock: sublethal hemorrhage and sciatic nerve stimulation. Am J Physiol. 1947;148:289-295.

    PubMed  CAS  Google Scholar 

  111. Foex BA, Kirkman E, Little RA. Injury (nociceptive afferent nerve stimulation) modifies the hemodynamic and metabolic responses to hemorrhage in immature swine. Crit Care Med. 2004;32:740-746.

    Article  PubMed  Google Scholar 

  112. Mackway-Jones K, Foex BA, Kirkman E, Little RA. Modification of the cardiovascular response to hemorrhage by somatic afferent nerve stimulation with special reference to gut and skeletal muscle blood flow. J Trauma. 1999;47:481-485.

    Article  PubMed  CAS  Google Scholar 

  113. Deitch EA. Intestinal permeability is increased in burn patients shortly after injury. Surgery. 1990;107:411-416.

    PubMed  CAS  Google Scholar 

  114. Deitch EA, Adams CA, Lu Q, Xu DZ. Mesenteric lymph from rats subjected to trauma-hemorrhagic shock are injurious to rat pulmonary microvascular endothelial cells as well as human umbilical vein endothelial cells. Shock. 2001;16:290-293.

    Article  PubMed  CAS  Google Scholar 

  115. Wilmore DW, Smith RJ, O’Dwyer ST, Jacobs DO, Ziegler TR, Wang XD. The gut: a central organ after surgical stress. Surgery. 1988;104:917-923.

    PubMed  CAS  Google Scholar 

  116. Rady MY, Little RA, Edwards JD, Kirkman E, Faithfull S. The effect of nociceptive stimulation on the changes in hemodynamics and oxygen-transport induced by hemorrhage in anesthetized pigs. J Trauma. 1991;31:617-622.

    Article  PubMed  CAS  Google Scholar 

  117. Rady MY, Kirkman E, Cranley J, Little RA. A comparison of the effects of skeletal-muscle injury and somatic afferent nerve-stimulation on the response to hemorrhage in anesthetized pigs. J Trauma. 1993;35:756-761.

    Article  PubMed  CAS  Google Scholar 

  118. Lockey DJ, Nordmann GR, Field JM, Clough D, Henning JD. The deployment of an intensive care facility with a military field hospital to the 2003 conflict in Iraq. Resuscitation. 2004;62:261-265.

    Article  PubMed  CAS  Google Scholar 

  119. Roberts MJ, Fox MA, Hamilton-Davies C, Dowson S. The experience of the intensive care unit in a British army field hospital during the 2003 Gulf conflict. J R Army Med Corps. 2003;149:284-290.

    PubMed  CAS  Google Scholar 

  120. Thompson PB, Herndon DN, Traber DL, Abston S. Effect on mortality of inhalation injury. J Trauma. 1986;26:163-165.

    Article  PubMed  CAS  Google Scholar 

  121. Prior K, Nordmann G, Sim K, Mahoney P, Thomas R. Management of inhalational injuries in UK burns centres – a questionnaire survey. J Intensive Care Soc. 2009;10:141-144.

    Google Scholar 

  122. Hollingsed TC, Saffle JR, Barton RG, Craft WB, Morris SE. Etiology and consequences of respiratory failure in thermally injured patients. Am J Surg. 1993;166:592-596.

    Article  PubMed  CAS  Google Scholar 

  123. de La Cal MA, Cerda E, Garcia-Hierro P, et al. Pneumonia in patients with severe burns: a classification according to the concept of the carrier state. Chest. 2001;119:1160-1165.

    Article  Google Scholar 

  124. Walton JJ, Manara AR. Burns and smoke inhalation. Anaesth Intens Care Med. 2005;6:317-321.

    Article  Google Scholar 

  125. Hilton PJ, Hepp M. The immediate care of the burned patient. BJA CEPD Rev. 2001;1:113-116.

    Google Scholar 

  126. Black RG, Kinsella J. Anaesthetic management for burns patients. BJA CEPD Rev. 2001;1:177-180.

    Google Scholar 

  127. Einhorn IN. Physiological and toxicological aspects of smoke produced during the combustion of polymeric materials. Environ Health Perspect. 1975;11:163-189.

    PubMed  CAS  Google Scholar 

  128. Peitzman AB, Shires GT III, Teixidor HS, Curreri PW, Shires GT. Smoke inhalation injury: evaluation of radiographic manifestations and pulmonary dysfunction. J Trauma. 1989;29:1232-1238.

    Article  PubMed  CAS  Google Scholar 

  129. Kawecki M, Wroblewski P, Sakiel S, Gawel S, Glik J. Fibreoptic bronchoscopy in routine clinical practice in confirming the diagnosis and treatment of inhalation burns. Burns. 2007;33:554-560.

    Article  Google Scholar 

  130. Oba Y, Salzman GA. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury. N Engl J Med. 2000;343:813-814.

    PubMed  CAS  Google Scholar 

  131. Cioffi WG Jr, Rue LW III, Graves TA, McManus WF, Mason AD Jr, Pruitt BA Jr. Prophylactic use of high-frequency percussive ventilation in patients with inhalation injury. Ann Surg. 1991;213:575-580.

    Article  PubMed  Google Scholar 

  132. Schmalstieg FC, Keeney SE, Rudloff HE, et al. Arteriovenous CO2 removal improves survival compared to high frequency percussive and low tidal volume ventilation in a smoke/burn sheep acute respiratory distress syndrome model. Ann Surg. 2007;246:512-521.

    Article  PubMed  Google Scholar 

  133. Hall JJ, Hunt JL, Arnoldo BD, Purdue GF. Use of high-frequency percussive ventilation in inhalation injuries. J Burn Care Res. 2007;28:396-400.

    Article  PubMed  Google Scholar 

  134. Brower RG, Ware LB, Berthiaume Y, Matthay MA. Treatment of ARDS. Chest. 2001;120:1347-1367.

    Article  PubMed  CAS  Google Scholar 

  135. Aslan S, Kandis H, Akgun M, Cakir Z, Inandi T, Gorguner M. The effect of nebulized NaHCO3 treatment on “RADS” due to chlorine gas inhalation. Inhal Toxicol. 2006;18:895-900.

    Article  PubMed  CAS  Google Scholar 

  136. Murakami K, McGuire R, Cox RA, et al. Heparin nebulization attenuates acute lung injury in sepsis following smoke inhalation in sheep. Shock. 2002;18:236-241.

    Article  PubMed  Google Scholar 

  137. Wang D, Zwischenberger JB, Savage C, et al. High-frequency percussive ventilation with systemic heparin improves short-term survival in a LD100 sheep model of acute respiratory distress syndrome. J Burn Care Res. 2006;27:463-471.

    Article  PubMed  Google Scholar 

  138. Desai MH, Mlcak R, Richardson J, Nichols R, Herndon DN. Reduction in mortality in pediatric patients with inhalation injury with aerosolized heparin/N-acetylcystine [correction of acetylcystine] therapy. J Burn Care Rehabil. 1998;19:210-212.

    Article  PubMed  CAS  Google Scholar 

  139. Brown M, Desai M, Traber LD, Herndon DN, Traber DL. Dimethylsulfoxide with heparin in the treatment of smoke inhalation injury. J Burn Care Rehabil. 1988;9:22-25.

    Article  PubMed  CAS  Google Scholar 

  140. Mlcak RP, Suman OE, Herndon DN. Respiratory management of inhalation injury. Burns. 2007;33:2-13.

    Article  PubMed  Google Scholar 

  141. Herndon DN, Thompson PB, Traber DL. Pulmonary injury in burned patients. Crit Care Clin. 1985;1:79-96.

    PubMed  CAS  Google Scholar 

  142. Cha SI, Kim CH, Lee JH, et al. Isolated smoke inhalation injuries: acute respiratory dysfunction, clinical outcomes, and short-term evolution of pulmonary functions with the effects of steroids. Burns. 2007;33:200-208.

    Article  PubMed  Google Scholar 

  143. Irrazabal CL, Capdevila AA, Revich L, et al. Early and late complications among 15 victims exposed to indoor fire and smoke inhalation. Burns. 2008;34:533-538.

    Article  PubMed  CAS  Google Scholar 

  144. Murakami K, Enkhbaatar P, Yu YM, et al. L-arginine attenuates acute lung injury after smoke inhalation and burn injury in sheep. Shock. 2007;28:477-483.

    Article  PubMed  CAS  Google Scholar 

  145. Morita N, Shimoda K, Traber MG, et al. Vitamin E attenuates acute lung injury in sheep with burn and smoke inhalation injury. Redox Rep. 2006;11:61-70.

    Article  PubMed  CAS  Google Scholar 

  146. Lew HL. Rehabilitation needs of an increasing population of patients: traumatic brain injury, polytrauma, and blast-related injuries. J Rehabil Res Dev. 2005;42:XIII-XIXV.

    Article  PubMed  Google Scholar 

  147. Cernak I, Wang ZG, Jiang JX, Bian XW, Savic J. Cognitive deficits following blast injury-induced neurotrauma: possible involvement of nitric oxide. Brain Inj. 2001;15:593-612.

    Article  PubMed  CAS  Google Scholar 

  148. Cernak I, Wang ZG, Jiang JX, Bian XW, Savic J. Ultrastructural and functional characteristics of blast injury-induced neurotrauma. J Trauma. 2001;50:695-706.

    Article  PubMed  CAS  Google Scholar 

  149. Kato K, Fujimura M, Nakagawa A, et al. Pressure-dependent effect of shock waves on rat brain: induction of neuronal apoptosis mediated by a caspase-dependent pathway. J Neurosurg. 2007;106:667-676.

    Article  PubMed  Google Scholar 

  150. Kaur C, Singh J, Lim MK, Ng BL, Yap EPH, Ling EA. The response of neurons and microglia to blast injury in the rat-brain. Neuropathol Appl Neurobiol. 1995;21:369-377.

    Article  PubMed  CAS  Google Scholar 

  151. Kaur C, Singh J, Lim MK, Ng BL, Yap EP, Ling EA. Ultrastructural changes of macroglial cells in the rat brain following an exposure to a non-penetrative blast. Ann Acad Med Singapore. 1997;26:27-29.

    PubMed  CAS  Google Scholar 

  152. Moochhala SM, Md S, Lu J, Teng CH, Greengrass C. Neuroprotective role of aminoguanidine in behavioral changes after blast injury. J Trauma. 2004;56:393-403.

    Article  PubMed  CAS  Google Scholar 

  153. Courtney AC, Courtney MW. A thoracic mechanism of mild traumatic brain injury due to blast pressure waves. Med Hypotheses. 2009;72:76-83.

    Article  PubMed  CAS  Google Scholar 

  154. Knudsen SK, Oen EO. Blast-induced neurotrauma in whales. Neurosci Res. 2003;46:377-386.

    Article  PubMed  Google Scholar 

  155. Frykberg ER, Tepas JJ III. Terrorist bombings. Lessons learned from Belfast to Beirut. Ann Surg. 1988;208:569-576.

    Article  PubMed  CAS  Google Scholar 

  156. Lockey DJ, Mackenzie R, Redhead J, et al. London bombings July 2005: the immediate pre-hospital medical response. Resuscitation. 2005;66:ix-xii.

    Article  PubMed  CAS  Google Scholar 

  157. Baskin TW, Holcomb JB. Bombs, mines, blast, fragmentation and thermobaric mechanisms of injury. In: Mahoney PF, Ryan J, Brookes A, Schwab CW, eds. Ballistic Trauma: A Practical Guide. London: Springer-Verlag; 2005:45-66.

    Chapter  Google Scholar 

  158. Kirkman E, Watts S, Cooper G. Blast Injury Research Models. Phil. Trans. R Soc. B. 2011;366:144-159.

    Google Scholar 

Download references

Acknowledgment

This chapter contains a significant amount of material published in an earlier chapter45,158 but also addresses additional aspects and important updates. The sections on primary blast injury to the auditory system and intestinal injury are adapted with permission from Baskin & Holcomb.157

© British Crown copyright 2010/DSTL – published with the permission of the Controller of Her Majesty’s Stationery Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrys Kirkman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Kirkman, E., Jacobs, N., Nordmann, G.R., Harrisson, S., Mahoney, P.F., Watts, S. (2011). Blast Injury. In: Brooks, A., Clasper, J., Midwinter, M., Hodgetts, T., Mahoney, P. (eds) Ryan's Ballistic Trauma. Springer, London. https://doi.org/10.1007/978-1-84882-124-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-124-8_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-123-1

  • Online ISBN: 978-1-84882-124-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics