Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 658 Accesses

Abstract

This chapter first reviews a classical deadlock prevention policy for automated manufacturing systems, which is usually considered to be the first that utilizes structural theory of Petri nets to design a liveness-enforcing (Petri net) supervisor. To reduce the computational complexity to design deadlock-free supervisors, a mixed-integer-programming based deadlock detection method is presented. Then, a number of deadlock prevention policies are introduced by using the controllability results of elementary and dependent siphons, which are applicable to ordinary and generalized Petri net models. This chapter shows that the deadlock prevention policies based on elementary siphons can reduce the computational and structural complexity and improve the behavioral permissiveness of the liveness-enforcing monitor-based supervisors. Importantly, some interesting or open problems in this area are listed at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah, I.B., ElMaraghy, H.A. (1998) Deadlock prevention and avoidance in FMS: A Petri net based approach. International Journal of Advanced Manufacturing Technology, vol.14, no.10, pp.704–715.

    Article  Google Scholar 

  2. Banaszak, Z., Roszkowska, E. (1988) Deadlock avoidance in pipeline concurrent processes. Podstawy Sterowania (Foundations of Control), vol.18, no.1, pp.3–17.

    MATH  MathSciNet  Google Scholar 

  3. Barkaoui, K., Abdallah, I.B. (1996) Analysis of a resource allocation problem in FMS using structure theory of Petri nets. In Proc. 1st Int. Workshop on Manufacturing and Petri Nets, pp.62–76.

    Google Scholar 

  4. Barkaoui, K., Pradat-Peyre, J.F. (1996) On liveness and controlled siphons in Petri nets. In Proc. 17th Int. Conf. on Applications and Theory of Petri Nets Lecture Notes in Computer Science, vol.1091, pp.57–72.

    Google Scholar 

  5. Barkaoui, K., Chaoui, A., Zouari, B. (1997) Supervisory control of discrete event systems based on structure theory of Petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.3750–3755.

    Google Scholar 

  6. Chao, D.Y. (2006) An incremental approach to extracting minimal bad siphons, International Journal of Information Science and Engineering, vol.23, no.1, pp.203–214.

    Google Scholar 

  7. Chao, D.Y. (2006) Computation of elementary siphons for deadlock control. The Computer Journal, vol.49, no.4, pp.470–479.

    Article  Google Scholar 

  8. Chao, D.Y. (2007) Max -controlled siphons for liveness of S3PGR2. IET Control Theory and Applications, vol.1, no.4, pp.933–936.

    Article  Google Scholar 

  9. Chu, F., Xie, X.L. (1997) Deadlock analysis of Petri nets using siphons and mathematical programming. IEEE Transactions on Robotics and Automation, vol.13, no.6, pp.793–804.

    Article  Google Scholar 

  10. Coffman, E.G., Elphick, M.J., Shoshani, A. (1971) Systems deadlocks. ACM Computing Surveys, vol.3, no.2, pp.67–78.

    Article  MATH  Google Scholar 

  11. Colom, J.M., Silva, M. (1989) Improving the linearly based characterization of P/T nets. In Proc. 10th Int. Conf. on Applications and Theory of Petri Nets, G. Rozenberg (Ed.), Lecture Notes in Computer Science, vol.483, pp.113–145.

    Google Scholar 

  12. Colom, J.M., Campos, J., Silva, M. (1990) On liveness analysis through linear algebraic techniques. In Proc. of Annual General Meeting of ESPRIT Basic Research Action 3148 Design Methods Based on Nets DEMON.

    Google Scholar 

  13. Commoner, F. (1972) Deadlocks in Petri nets. Report CA-7206-2311, Massachusetts Computer Associates, Wakeêld, Massachusetts.

    Google Scholar 

  14. D’souza, K.A., Khator, S.K. (1994) A survey of Petri nets in automated manufacturing systems control. Computers in Industry Engineering, vol.24, no.1, pp.5–16.

    Article  Google Scholar 

  15. D’souza, K.A., Khator, S.K. (1997) System reconffiguration to avoid deadlocks in automated manufacturing systems. Computers in Industry Engineering, vol.32, no.2, pp.455–465.

    Article  Google Scholar 

  16. Ezpeleta, J., Colom, J.M., Martinez, J. (1995) A Petri net based deadlock prevention policy for êxible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.11, no.2, pp.173–184.

    Article  Google Scholar 

  17. Fanti, M.P., Zhou, M.C. (2004) Deadlock control methods in automated manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.5–22.

    Article  Google Scholar 

  18. García-Vallés, F., Colom, J.M. (1999) Implicit places in net systems. In Proc. 8th Int. Workshop on Petri Nets and Performance Models, pp.104–113.

    Google Scholar 

  19. García-Vallés, F., Colom, J.M. (2002) Checking redundancy in supervisory control. A complexity result. In Proc. 15th IFAC World Congress on Automatic Control.

    Google Scholar 

  20. Giua, A., DiCesare, F., Silva, M. (1992) Generalized mutual exclusion constraints on nets with uncontrollable transitions. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.974–979.

    Google Scholar 

  21. Giua, A., Seatzu, C. (2007) A systems theory view of Petri nets. In Advances in Control Theory and Applications, Lecture Notes in Control and Information Science, vol.353, C. Bonivento et al. (Eds.), pp.99–127.

    Google Scholar 

  22. Gold, E.M. (1978) Deadlock predication: Easy and diffficult cases. SIAM Journal of Computing, vol.7, no.3, pp.320–336.

    Article  MATH  MathSciNet  Google Scholar 

  23. Haberman, A. (1969) Prevention of system deadlocks. Communications of the ACM, vol.12, no.7, pp.373–377.

    Article  Google Scholar 

  24. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S. L. (2001) Deadlock prevention policy based on Petri nets and siphons. International Journal of Production Research, vol.39, no.2, pp.283– 305.

    Article  MATH  Google Scholar 

  25. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S.L. (2001) A deadlock prevention policy for êxible manufacturing systems using siphons. In Proc. IEEE Int. Conf. on Robotics and Automation, pp.541–546.

    Google Scholar 

  26. Isloor, S.S., Marsland, T.A. (1980) The deadlock problem: An overview. Computer, vol.13, no.9, pp.58–77.

    Article  Google Scholar 

  27. Iordache, M.V., Moody, J.O., Antsaklis, P.J. (2002) Synthesis of deadlock prevention supervisors using Petri nets. IEEE Transactions on Robotics and Automation, vol.18, no.1, pp.59–68.

    Article  Google Scholar 

  28. Iordache, M.V., Antsaklis, P.J. (2006) Supervisory Control of Concurrent Systems: A Petri Net Structural Approach. Berlin: Springer.

    MATH  Google Scholar 

  29. Lautenbach, K., Ridder, H. (1996) The linear algebra of deadlock avoidance−a Petri net approach. No.25-1996, Technical Report, Institute of Software Technology, University of Koblenz-Landau, Koblenz, Germany.

    Google Scholar 

  30. Li, Z.W., Zhou, M.C. (2004) Elementary siphons of Petri nets and their application to deadlock prevention in êxible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.34, no.1, pp.38–51.

    Article  Google Scholar 

  31. Li, Z.W., Uzam, M., Zhou, M.C. (2004) Comments on “Deadlock prevention policy based on Petri nets and siphons”. International Journal of Production Research, vol.42, no.24, pp.5253–5254.

    Article  Google Scholar 

  32. Li, Z.W., Zhou, M.C. (2006) Two-stage method for synthesizing liveness-enforcing supervisors for êxible manufacturing systems using Petri nets. IEEE Transactions on Industrial Informatics, vol.2, no.4, pp.313–325.

    Article  Google Scholar 

  33. Li, Z.W., Hu, H.S., Wang, A.R. (2007) Design of liveness-enforcing supervisors for êxible manufacturing systems using Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol.37, no.4, pp.517–526.

    Article  Google Scholar 

  34. Li, Z.W., Liu, D. (2007) A correct minimal siphons extraction algorithm from a maximal unmarked siphon of a Petri net. International Journal of Production Research, vol.45, no.9, pp.2163–2167.

    Google Scholar 

  35. Li, Z.W., Zhao, M. (2008) On controllability of dependent siphons for deadlock prevention in generalized Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.38, no.2, pp.369–384.

    Article  MathSciNet  Google Scholar 

  36. Li, Z.W., Zhou, M.C. (2008) A survey and comparison of Petri net-based deadlock prevention policies for êxible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol.38, no.2, pp.172–188.

    Google Scholar 

  37. Li, Z.W. (2009) On systematic methods to remove redundant monitors from livenessenforcing net supervisors. To appear in Computer and Industrial Engineering.

    Google Scholar 

  38. Lindo, Premier Optimization Modeling Tools, http://www.lindo.com/.

    Google Scholar 

  39. Moody, J.O., Antsaklis, P.J. (1998) Supervisory Control of Discrete Event Systems Using Petri Nets. Boston, MA: Kluwer.

    MATH  Google Scholar 

  40. Park, J., Reveliotis, S.A. (2001) Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and êxible routings. IEEE Transactions on Automatic Control, vol.46, no.10, pp.1572–1583.

    Article  MATH  MathSciNet  Google Scholar 

  41. Piroddi, L., Cordone, R., Fumagalli, I. (2008) Selective siphon control for deadlock prevention in Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A. vol. 38, no. 6, pp.1337–1348.

    Article  Google Scholar 

  42. Reveliotis, S.A. (2005) Real-time Management of Resource Allocation Systems: A Discrete Event Systems Approach. New York: Springer.

    MATH  Google Scholar 

  43. Roszkowska, E. (1990) Deadlock avoidance in concurrent compound pipeline processes, Archives of Theoretical and Engineering Informatics, vol.2, no.3–4, pp. 227–242.

    Google Scholar 

  44. Roszkowska, E. (1991) Application of Petri nets to the modelling and effficiency evaluation of FMS, Ph.D. thesis (in Polish), Report 4/91, Institute of Engineering Cybernetics, Wroclaw University of Technology, Poland.

    Google Scholar 

  45. Roszkowska, E., Wojcik, R. (1993) Problems of process ôw feasibility in FAS. In CIM in Process and Manufacturing Industries, Oxford: Pergamon Press, pp.115–120.

    Google Scholar 

  46. Roszkowska, E., Jentink, J. (1993) Minimal restrictive deadlock avoidance in FMSs. In Proc. European Control Conf., J. W. Nieuwenhuis, C. Pragman, and H. L. Trentelman, Eds., vol.2, pp. 530–534.

    Google Scholar 

  47. Silva, M., Teruel, E., Colom, J.M. (1998) Linear algebraic and linear programming techniques for the analysis of place/transition net systems. In Lectures on Petri Nets I: Basic Models, Lectures Notes in Computer Science, vol.1491, W. Reisig and G. Rozenberg (Eds.), pp.309– 373.

    Google Scholar 

  48. Singhal, M. (1989) Deadlock detection in distributed systems. IEEE Computer, vol.22, no.11, pp.37–48.

    Google Scholar 

  49. Starke, P.H. (2003) INA: Integrated Net Analyzer. http://www2.informatik.hu-berlin.de/ ∼starke/ina.html.

    Google Scholar 

  50. Tricas, F., García-Vallés, F., Colom, J.M., Ezpeleta, J. (1998) A structural approach to the problem of deadlock prevention in processes with shared resources. In Proc. 4th Workshop on Discrete Event Systems, pp.273–278.

    Google Scholar 

  51. Tricas, F., García-Vallés, F., Colom, J.M., Ezpeleta, J. (2000) An iterative method for deadlock prevention in FMSs. In Proc. 5th Workshop on Discrete Event Systems, R. Boel and G.Stremersch (Eds.), pp.139–148.

    Google Scholar 

  52. Uzam, M., Zhou, M.C. (2006) An improved iterative synthesis method for liveness enforcing supervisors of êxible manufacturing systems. International Journal of Production Research, vol.44, no.10, pp.1987–2030.

    Article  Google Scholar 

  53. Uzam, M., Li, Z.W., Zhou, M.C. (2007) Identiffication and elimination of redundant control places in Petri net based liveness enforcing supervisors of FMS. International Journal of Advanced Manufacturing Technology, vol.35, no.1–2, pp.150–168.

    Google Scholar 

  54. Uzam, M., Zhou, M.C. (2007) An iterative synthesis approach to Petri net based deadlock prevention policy for êxible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.37, no.3, pp.362–371.

    Article  Google Scholar 

  55. Viswanadham, N., Narahari, Y., Johnson, T. (1990) Deadlock prevention and deadlock avoidance in êxible manufacturing systems using Petri net models. IEEE Transactions on Robotics and Automation, vol.6, no.6, pp.713–723.

    Article  Google Scholar 

  56. Wu, N.Q. (1999) Necessary and suffficient conditions for deadlock-free operation in êxible manufacturing systems using a colored Petri net model. IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol.29, no.2, pp.192–204.

    Article  Google Scholar 

  57. Wu, N.Q., Zhou, M.C. (2001) Avoiding deadlock and reducing starvation and blocking in automated manufacturing systems. IEEE Transactions on Robotics and Automation, vol.17, no.5, pp.658–669.

    Article  MathSciNet  Google Scholar 

  58. Zouari, B., Barkaoui, K. (2003) Parameterized supervisor synthesis for a modular class of discrete event systems. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.1874– 1879.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Deadlock Control Based on Elementary Siphons. In: Deadlock Resolution in Automated Manufacturing Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84882-244-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-244-3_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-243-6

  • Online ISBN: 978-1-84882-244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics