Skip to main content

Computer-Assisted Designed Hip Arthroplasty

  • Chapter
  • First Online:
Biomechanics and Biomaterials in Orthopedics

Abstract

Restoration of hip biomechanic during the arthroplasty is one of the prerequites to a full function recovery and a good longevity. The general use of computer technology in the operating room to assist the surgeon during the surgery underlines our strong believe of a global concept which starts at the time of the stem conception, or at the time of computerized preoperative planning in case of individual stem solution. The purpose of this chapter is to describe the elements which will lead to the use of computer assisted hip arthroplasty according to the 20 years experience obtained in computer assisted preoperative planning of total hip arthroplasty and computer assisted designed of custom hip stem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandler HP, Reineck FT, Wixson RL, McCarthy JC. Total hip replacement in patients younger than thirty years old. A five-year follow-up study. J Bone Joint Surg Am. 1981;63(9):1426–34.

    CAS  PubMed  Google Scholar 

  2. Collis DK. Cemented total hip replacement in patients who are less than fifty years old. J Bone Joint Surg Am. 1984;66(3):353–9.

    CAS  PubMed  Google Scholar 

  3. Dorr LD, Luckett M, Conaty JP. Total hip arthroplasties in patients younger than 45 years. A nine- to ten-year follow-up study. Clin Orthop Relat Res. 1990;260:215–9.

    PubMed  Google Scholar 

  4. Dorr LD, Takei GK, Conaty JP. Total hip arthroplasties in patients less than forty-five years old. J Bone Joint Surg Am. 1983;65(4):474–9.

    CAS  PubMed  Google Scholar 

  5. Halley DK, Wroblewski BM. Long-term results of low-friction arthroplasty in patients 30 years of age or younger. Clin Orthop Relat Res. 1986;211:43–50.

    PubMed  Google Scholar 

  6. Sharp DJ, Porter KM. The Charnley total hip arthroplasty in patients under age 40. Clin Orthop Relat Res. 1985;201:51–6.

    PubMed  Google Scholar 

  7. Stauffer RN. Ten year follow-up study of total hip replacement. J Bone Joint Surg Am. 1982;7:983–90.

    Google Scholar 

  8. White SH. The fate of cemented total hip arthroplasty in young patients. Clin Orthop Relat Res. 1988;231:29–34.

    PubMed  Google Scholar 

  9. Malchau H, Herberts P. Prognosis of total hip replacement in Sweden. Proceedings of the 65th annual meeting of the American Academy of Orthopaedic Surgeons. New Orleans, Louisiana. 1998.

    Google Scholar 

  10. Boeree NR, Bannister GC. Cemented total hip arthroplasty in patients younger than 50 years of age. Ten- to 18-year results. Clin Orthop Relat Res. 1993;287:153–9.

    PubMed  Google Scholar 

  11. Judet R, Siguier M, Brumpt B, Judet T. A noncemented total hip prosthesis. Clin Orthop Relat Res. 1978;137:76–84.

    PubMed  Google Scholar 

  12. Robertson DD, Walker PS, Hirano SK, et al. Improving the fit of press-fit hip stems. Clin Orthop Relat Res. 1988;228:134–40.

    PubMed  Google Scholar 

  13. Mont MA, Maar DC, Krackow KA, et al. Total hip replacement without cement for non-inflammatory osteoarthrosis in patients who are less than forty-five years old. J Bone Joint Surg Am. 1993;75(5):740–51.

    CAS  PubMed  Google Scholar 

  14. Glassman AH. Porous coated total hip replacement in young patients. Read at the annual meeting of the American Academy of Orthopaedic Surgeons. New Orleans, Louisiana. 1990.

    Google Scholar 

  15. Rubin PJ, Leyvraz PF, Aubaniac JM, et al. The morphology of the proximal femur. A three-dimensional radiographic analysis. J Bone Joint Surg Br. 1992;74(1):28–32.

    CAS  PubMed  Google Scholar 

  16. Noble PC, Alexander JW, Lindahl LJ, et al. The anatomic basis of femoral component design. Clin Orthop Relat Res. 1988;235:148–65.

    PubMed  Google Scholar 

  17. Argenson J-N, Ryembault E, Flecher X, et al. Three-dimensional anatomy of the hip in osteoarthritis after developmental dysplasia. J Bone Joint Surg Br. 2005;87(9):1192–6.

    Article  PubMed  Google Scholar 

  18. Bennett D, Humphreys L, O’Brien S, et al. Activity levels and polyethylene wear of patients 10 years post hip replacement. Clin Biomech (Bristol, Avon). 2008;23(5):571–6.

    Article  CAS  Google Scholar 

  19. Bontrager KC. Proximal femur and pelvic girdle. In: Radiographic positioning and related anatomy. 5th ed. London: Mosby; 2001.

    Google Scholar 

  20. Bourne RB, Rorabeck CH. Soft tissue balancing: the hip. J Arthroplasty. 2002;17(4 Suppl 1):17–22.

    Article  PubMed  Google Scholar 

  21. Fackler CD, Poss R. Dislocation in total hip arthoplasties. Clin Orthop Relat Res. 1980;151:169–78.

    PubMed  Google Scholar 

  22. Breathnach AS. Frazer’s anatomy of the human skeleton. London: Churchill; 1965. p. 120.

    Google Scholar 

  23. Davidson JA. Characteristics of metal and ceramic total hip bearing surfaces and their effect on long-term ultra high molecular weight polyethylene wear. Clin Orthop Relat Res. 1993;294:361–78.

    PubMed  Google Scholar 

  24. DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res. 1976;121:20–32.

    PubMed  Google Scholar 

  25. Devane PA, Horne JG, Martin K, Coldham G, Krause B. Three-dimensional polyethylene wear of a press-fit titanium prosthesis. Factors influencing generation of polyethylene debris. J Arthroplasty. 1997;12(3):256–66.

    Article  CAS  PubMed  Google Scholar 

  26. Ramaniraka N, Rakotomanana L, Rubin PJ, Leyvraz PF. Influence of the extramedullary parameters on the stem stability and the stress transfer. Proceedings of the 11th annual symposium of the International Society for Technology in Arthroplasty, Marseille, France. 1998.

    Google Scholar 

  27. Argenson JN, Pizzetta M, Essinger JR, Aubaniac JM. Symbios custom hip prosthesis : concept, realization and early results. J Bone Joint Surg [Br]. 1992;74-B(Supp 2):167.

    Google Scholar 

  28. Argenson JN, Simonet JY, Aubaniac JM. The indications for cementless custom prostheses in congenital hip dislocation. J Bone Joint Surg [Br]. 1993;75-B(Supp 1):113.

    Google Scholar 

  29. Argenson JN. Preoperative planning of total hip reconstruction for congenital dislocation of the hip using custom cementless implants. J South Orthop Assoc. 1994;3:11–8.

    Google Scholar 

  30. Husmann O, Rubin PJ, Leyvraz PF, de Roguin B, Argenson JN. Three-dimensional morphology of the proximal femur. J Arthroplasty. 1997;12(4):444–50.

    Article  CAS  PubMed  Google Scholar 

  31. Argenson JN, Ettore PP, Aubaniac JM. Revêtement des tiges fémorales non cimentées. Etude comparative clinique et radiographique. Revue de Chirurgie Orthopédique. 1997;83(Supp 2):44–5.

    Google Scholar 

  32. Argenson JN, Hostalrich FX, Essinger JR, Aubaniac JM. Preoperative planning in designing custom made hip prosthesis. J South Orthop Assoc. 1992;74-B Suppl 2:180.

    Google Scholar 

  33. Aubaniac JM, Argenson JN, Pizzetta M. Addressing the anteversion problem in severe CDH and primary or secondary dismorphic, with Egoform and Symbios custom made prosthesis, Marseille, France. 1990.

    Google Scholar 

  34. Crowe JF, Mani VJ, Ranawat CS. Total hip replacement in congenital dislocation and dysplasia of the hip. J Bone Joint Surg Am. 1979;61(1):15–23.

    CAS  PubMed  Google Scholar 

  35. Kerjosse R, Tamby I. La situation démographique en 1999. Mouvement de la population. Démographie société in INSEE. Résultats; 1999.

    Google Scholar 

  36. Flecher X, Argenson JN, Parratte S, Ryembault E, Aubaniac JM. Custom cementless stem for osteoarthritis following developmental hip dysplasia. Rev Chir Orthop Reparatrice Appar Mot. 2006;92(4):332–42.

    Article  CAS  PubMed  Google Scholar 

  37. Flecher X, Pearce O, Parratte S, Aubaniac J-M, Argenson J-N. Custom cementless stem improves hip function in young patients at 15-year followup. Clin Orthop Relat Res. 2010;468(3):747–55.

    Article  PubMed  Google Scholar 

  38. Wettstein M, Mouhsine E, Argenson J-N, et al. Three-dimensional computed cementless custom femoral stems in young patients: midterm followup. Clin Orthop Relat Res. 2005;437:169–75.

    Article  PubMed  Google Scholar 

  39. Flecher X, Parratte S, Aubaniac J-M, Argenson J-N. Three-dimensional custom-designed cementless femoral stem for osteoarthritis secondary to congenital dislocation of the hip. J Bone Joint Surg Br. 2007;89(12):1586–91.

    Article  CAS  PubMed  Google Scholar 

  40. Collis DK. Long-term (twelve to eighteen-year) follow-up of cemented total hip replacements in patients who were less than fifty years old. A follow-up note. J Bone Joint Surg Am. 1991;73(4):593–7.

    CAS  PubMed  Google Scholar 

  41. Amstutz HC, Markolf KL, McNeice GM, Gruen TA. Loosening of total hip components : cause and prevention. The hip : Proceedings of the 4th Open Scientific Meebog of the Hip Society, St Louis, Missouri. 1976. p. 102–16.

    Google Scholar 

  42. Ballard WT, Callaghan JJ, Sullivan PM, Johnston RC. The results of improved cementing techniques for total hip arthroplasty in patients less than fifty years old. A ten-year follow-up study. J Bone Joint Surg Am. 1994;76(7):959–64.

    CAS  PubMed  Google Scholar 

  43. Harris WH, McCarthy Jr JC, O’Neill DA. Femoral component loosening using contemporary techniques of femoral cement fixation. J Bone Joint Surg Am. 1982;64(7):1063–7.

    CAS  PubMed  Google Scholar 

  44. Joshi AB, Porter ML, Trail IA, et al. Long-term results of Charnley low-friction arthroplasty in young patients. J Bone Joint Surg Br. 1993;75(4):616–23.

    CAS  PubMed  Google Scholar 

  45. Mulroy Jr RD, Harris WH. The effect of improved cementing techniques on component loosening in total hip replacement. An 11-year radiographic review. J Bone Joint Surg Br. 1990;72(5):757–60.

    PubMed  Google Scholar 

  46. Oh I, Carlson CE, Tomford WW, Harris WH. Improved fixation of the femoral component after total hip replacement using a methacrylate intramedullary plug. J Bone Joint Surg Am. 1978;60(5):608–13.

    CAS  PubMed  Google Scholar 

  47. Solomon MI, Dall DM, Learmonth ID, Davenport JM. Survivorship of cemented total hip arthroplasty in patients 50 years of age or younger. J Arthroplasty. 1992;7(Suppl):347–52.

    Article  PubMed  Google Scholar 

  48. Huten D. Luxation et subluxation des prothèses totales de hanche. Dans: Cahiers d’Enseignement de la SOFCOT. Paris: Expansion Scientifique Française; 1996. p. 19–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Flecher MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Flecher, X., Parratte, S., Aubaniac, JM., Argenson, JN. (2016). Computer-Assisted Designed Hip Arthroplasty. In: Poitout, D. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-84882-664-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-664-9_27

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-663-2

  • Online ISBN: 978-1-84882-664-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics