Skip to main content

Transforming “Waste” into Gold: Identification of Novel Stem Cells Resources with Therapeutic Potential in Neuromuscular Disorders

  • Chapter
  • First Online:
Regenerative Medicine Using Pregnancy-Specific Biological Substances

Abstract

Once considered a biological waste product, umbilical cord blood (UCB) has emerged as a viable source of hematopoietic stem cells for transplantation. At the time of World War II, stored placental blood was explored as a source of blood for transfusion, and found to be similar in effect to fresh adult blood. During the 1970s, it was recognized that UCB contains hematopoietic progenitor cells. The suggestion that cryopreserved UCB could be used as a source of stem cells in much the same way as transplantation of bone marrow paved the way for the first successful human UCB transplant, performed in France in 1988. The recipient remains alive and well 18 years later. Since then, more than 2,000 transplants have been performed worldwide, most using stored units in private or public cord blood banks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25:1384-1392.

    Article  CAS  PubMed  Google Scholar 

  2. Bankowski E, Sobolewski K, Palka J, et al. Decreased expression of the insulin-like growth factor-I-binding protein-1 (IGFBP-1) phosphoisoform in preeclamptic Wharton’s jelly and its role in the regulation of collagen biosynthesis. Clin Chem Lab Med. 2004;42:175-181.

    Article  CAS  PubMed  Google Scholar 

  3. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, et al. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol. 2000;151(6):1221-1234.

    Article  CAS  PubMed  Google Scholar 

  4. Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells. 2007;25(11):2886-2895.

    Article  PubMed  Google Scholar 

  5. Conconi MT, Burra P, Di Liddo R, et al. CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med. 2006;18:1089-1096.

    CAS  PubMed  Google Scholar 

  6. Corre J, Barreau C, Cousin B, et al. Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. J Cell Physiol. 2006;208:282-288.

    Article  CAS  PubMed  Google Scholar 

  7. Dicker A, Le Blanc K, Astrom G, et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res. 2005;308:283-290.

    Article  CAS  PubMed  Google Scholar 

  8. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249-1260.

    Article  CAS  PubMed  Google Scholar 

  9. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient’s bedside: An update on clinical trials with mesenchymal stem cells. J Cell Physiol. 2007;211:27-35.

    Article  CAS  PubMed  Google Scholar 

  10. Ishikawa F, Drake CJ, Yang S, et al. Transplanted human cord blood cells give rise to hepatocytes in engrafted mice. Ann NY Acad Sci. 2003;996:174-185.

    Article  CAS  PubMed  Google Scholar 

  11. Karahuseyinoglu S, Cinar O, Kilic E, et al. Biology of the stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 2007;25:319-331.

    Article  CAS  PubMed  Google Scholar 

  12. Katz AJ, Llull R, Hedrick MH, Futrell JW. Emerging approaches to the tissue engineering of fat. Clin Plast Surg. 1999;26:587-603.

    CAS  PubMed  Google Scholar 

  13. Kobayashi K, Kubota T, Aso T. Study on myofibroblast differentiation in the stromal cells of Wharton’s jelly: expression and localization of alphasmooth muscle actin. Early Hum Dev. 1998;51:223-233.

    Article  CAS  PubMed  Google Scholar 

  14. Kong KY, Ren J, Kraus M, et al. Human umbilical cord blood cells differentiate into muscle in sjl muscular dystrophy mice. Stem Cells. 2004;22:981-993.

    Article  CAS  PubMed  Google Scholar 

  15. Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91:1017-1026.

    CAS  PubMed  Google Scholar 

  16. Madonna R, Willerson JT, Geng YJ. Myocardin a enhances telomerase activities in adipose tissue mesenchymal cells and embryonic stem cells undergoing cardiovascular myogenic differentiation. Stem Cells. 2008;26:202-211.

    Article  CAS  PubMed  Google Scholar 

  17. Moon MH, Kim SY, Kim YJ, et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem. 2006;17:279-290.

    Article  CAS  PubMed  Google Scholar 

  18. Pesce M, Orlandi A, Iachininoto MG, et al. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res. 2003;93:51-62.

    Article  Google Scholar 

  19. Planat-Benard V, Menard C, Andre M, et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res. 2004;94:223-229.

    Article  CAS  PubMed  Google Scholar 

  20. Rodríguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci USA. 2006;103(32):12167-12172.

    Article  PubMed  Google Scholar 

  21. Sarugaser R, Lickorish D, Baksh D, et al. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells. 2005;23:220-229.

    Article  PubMed  Google Scholar 

  22. Secco M, Zucconi E, Vieira NM, et al. Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells. 2008;1:146-150.

    Article  Google Scholar 

  23. Shi YY, Nacamuli RP, Salim A, et al. The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg. 2005;116:1686-1696.

    Article  CAS  PubMed  Google Scholar 

  24. Strem BM, Zhu M, Alfonso Z, et al. Expression of ­cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy. 2005;7:282-291.

    Article  CAS  PubMed  Google Scholar 

  25. Timper K, Seboek D, Eberhardt M, et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341:1135-1140.

    Article  CAS  PubMed  Google Scholar 

  26. Tse W, Laughlin MJ. Umbilical cord blood transplantation: a new alternative option. Hematol Am Soc Hematol Educ Prog. 2005;2005:377-383.

    Google Scholar 

  27. Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22:1330-1337.

    Article  PubMed  Google Scholar 

  28. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211-228.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayana Zatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Secco, M., Zatz, M., Vieira, N. (2011). Transforming “Waste” into Gold: Identification of Novel Stem Cells Resources with Therapeutic Potential in Neuromuscular Disorders. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine Using Pregnancy-Specific Biological Substances. Springer, London. https://doi.org/10.1007/978-1-84882-718-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-718-9_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-717-2

  • Online ISBN: 978-1-84882-718-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics