Skip to main content

Future of Cardiogenetics

  • Chapter
  • First Online:
Clinical Cardiogenetics

Abstract

During the past years, enormous efforts have been made in population genetics, testing common single nucleotide polymorphisms (SNPS) in large, collaborative, multicenter studies involving tens of thousands of subjects, which have revolutionized the production of genetic data. Genome-wide association studies (GWAS) as the current technology for analysis of complex disease genetics2, have identified novel genes associated with disease and traits. In the field of cardiovascular diseases (CVDs) novel loci were recently found to be associated with coronary artery disease3-5, early onset myocardial infarction6, atrial fibrillation7, 8, left ventricular (LV) structure and function9, stroke10, blood pressure11, 12, and lipid levels.13 Currently, there are a rapidly growing number of genetic associations that achieve very strong statistical support and are replicated in additional, independent studies. These discoveries increase expectations that genetic and genomic information will become an important component of personalized health care and disease prevention, and a great asset to translational research.14-16

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flock B. NIH seeks input on proposed repository for genetic information [news release]. August 30, 2006. Available at: http://www.nih.gov/news/pr/aug2006/od-30.htm. Accessed March 10, 2010.

  2. Holmes MV, Shah SH, Angelakopoulou A, et al. A report on the Genetics of Complex Diseases meeting of the British Atherosclerosis Society, Cambridge, UK, 17–18 September 2009. Atherosclerosis. 2010 February;208(2):599-602.

    Article  PubMed  CAS  Google Scholar 

  3. McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007 June 8;316(5830):1488-1491.

    Article  PubMed  CAS  Google Scholar 

  4. Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007 August 2;357(5):443-453.

    Article  PubMed  CAS  Google Scholar 

  5. Schunkert H, Gotz A, Braund P, et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation. 2008 April 1;117(13):1675-1684.

    Article  PubMed  Google Scholar 

  6. Kathiresan S, Voight BF, Purcell S, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009 March;41(3):334-341.

    Article  PubMed  CAS  Google Scholar 

  7. Pfeufer A, van Noord C, Marciante KD, et al. Genome-wide association study of PR interval. Nat Genet. 2010 42(2):153-159.

    Article  PubMed  CAS  Google Scholar 

  8. Ellinor PT, Lunetta KL, Glazer NL, et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet. 2010 March;42(3):240-244.

    Article  PubMed  CAS  Google Scholar 

  9. Vasan RS, Glazer NL, Felix JF, et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA. 2009 July 8;302(2):168-178.

    Article  PubMed  CAS  Google Scholar 

  10. Ikram MA, Seshadri S, Bis JC, et al. Genomewide association studies of stroke. N Engl J Med. 2009 April 23;360(17):1718-1728.

    Article  PubMed  CAS  Google Scholar 

  11. Levy D, Ehret GB, Rice K et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009 May 10.

    Google Scholar 

  12. Newton-Cheh C, Johnson T, Gateva V et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009 41:666-676.

    Google Scholar 

  13. Kathiresan S, Willer CJ, Peloso GM, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009 January;41(1):56-65.

    Article  PubMed  CAS  Google Scholar 

  14. Feero WG, Guttmacher AE, Collins FS. The genome gets personal–almost. JAMA. 2008 March 19;299(11):1351-1352.

    Article  PubMed  CAS  Google Scholar 

  15. Doevendans PA. Unravelling the pathophysiology of heart failure through human genomics. Eur J Clin Invest. 2001 May;31(5):378-379.

    Article  PubMed  CAS  Google Scholar 

  16. Doevendans PA. The human genome project is ready for us, but are we ready for the human genome project. Cardiologie. 1998;5:595-599.

    Google Scholar 

  17. Khoury MJ, Gwinn M, Yoon PW, Dowling N, Moore CA, Bradley L. The continuum of translation research in genomic medicine: how can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention? Genet Med. 2007 October;9(10):665-674.

    Article  PubMed  Google Scholar 

  18. Robin NH, Tabereaux PB, Benza R, Korf BR. Genetic testing in cardiovascular disease. J Am Coll Cardiol. 2007 August 21;50(8):727-737.

    Article  PubMed  CAS  Google Scholar 

  19. Hofman N, van Langen, I, Wilde AA. Genetic testing in cardiovascular diseases. Curr Opin Cardiol. 2010 February 15.

    Google Scholar 

  20. US System of Oversight of Genetic Testing: A Response to the Charge of the Secretary of Health and Human Services, April 2008. Available at: http://oba.od.nih.gov/oba/SACGHS/reports/SACGHS_oversight_report.pdf. Accessed March 10, 2010.

  21. Ransohoff DF, Khoury MJ. Personal genomics: information can be harmful. Eur J Clin Invest. 2010 January;40(1):64-68.

    Article  PubMed  CAS  Google Scholar 

  22. Green RC, Roberts JS, Cupples LA, et al. Disclosure of APOE genotype for risk of Alzheimer’s disease. N Engl J Med. 2009 July 16;361(3):245-254.

    Article  PubMed  CAS  Google Scholar 

  23. Humphries SE, Ridker PM, Talmud PJ. Genetic testing for cardiovascular disease susceptibility: a useful clinical management tool or possible misinformation? Arterioscler Thromb Vasc Biol. 2004 April;24(4):628-636.

    Article  PubMed  CAS  Google Scholar 

  24. Grosse SD, Rogowski WH, Ross LF, Cornel MC, Dondorp WJ, Khoury MJ. Population screening for genetic disorders in the 21st century: evidence, economics, and ethics. Public Health Genom. 2010;13(2):106-115.

    Article  CAS  Google Scholar 

  25. Therrell BL, Adams J. Newborn screening in North America. J Inherit Metab Dis. 2007 August;30(4):447-465.

    Article  PubMed  Google Scholar 

  26. Homsma SJ, Huijgen R, Middeldorp S, Sijbrands EJ, Kastelein JJ. Molecular screening for familial hypercholesterolaemia: consequences for life and disability insurance. Eur J Hum Genet. 2008 January;16(1):14-17.

    Article  PubMed  CAS  Google Scholar 

  27. Umans-Eckenhausen MA, Defesche JC, Sijbrands EJ, Scheerder RL, Kastelein JJ. Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands. Lancet. 2001 January 20;357(9251):165-168.

    Article  PubMed  CAS  Google Scholar 

  28. Leren TP. Cascade genetic screening for familial hypercholesterolemia. Clin Genet. 2004 December;66(6):483-487.

    Article  PubMed  CAS  Google Scholar 

  29. Herman K, van Heyningen C, Wile D. Cascade screening for familial hypercholesterolaemia and its effectiveness in the prevention of vascular disease. Br J Diabet Vasc Dis. 2009;9:171-174.

    Article  Google Scholar 

  30. Brand A, Brand H, Schulte in den BT. The impact of genetics and genomics on public health. Eur J Hum Genet. 2008 January;16(1):5-13.

    Article  PubMed  Google Scholar 

  31. Bare LA, Morrison AC, Rowland CM, et al. Five common gene variants identify elevated genetic risk for coronary heart disease. Genet Med. 2007 October;9(10):682-689.

    Article  PubMed  CAS  Google Scholar 

  32. Humphries SE, Cooper JA, Talmud PJ, Miller GJ. Candidate gene genotypes, along with conventional risk factor assessment, improve estimation of coronary heart disease risk in healthy UK men. Clin Chem. 2007 January;53(1):8-16.

    Article  PubMed  CAS  Google Scholar 

  33. Morrison AC, Bare LA, Chambless LE, et al. Prediction of coronary heart disease risk using a genetic risk score: the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2007 July 1;166(1):28-35.

    Article  PubMed  Google Scholar 

  34. Paynter NP, Chasman DI, Buring JE, Shiffman D, Cook NR, Ridker PM. Cardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21.3. Ann Intern Med. 2009 January 20;150(2):65-72.

    Article  PubMed  Google Scholar 

  35. Talmud PJ, Cooper JA, Palmen J, et al. Chromosome 9p21.3 coronary heart disease locus genotype and prospective risk of CHD in healthy middle-aged men. Clin Chem. 2008 March;54(3):467-474.

    Article  PubMed  CAS  Google Scholar 

  36. Humphries SE, Yiannakouris N, Talmud PJ. Cardiovascular disease risk prediction using genetic information (gene scores): is it really informative? Curr Opin Lipidol. 2008 April;19(2):128-132.

    Article  PubMed  CAS  Google Scholar 

  37. Pepe MS, Gu JW, Morris DE. The potential of genes and other markers to inform about risk. Cancer Epidemiol Biomarkers Prev. 2010 March;19(3):655-665.

    Article  PubMed  CAS  Google Scholar 

  38. Janssens AC, van Duijn CM. Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet. 2008 October 15;17(R2):R166-R173.

    Article  PubMed  CAS  Google Scholar 

  39. Janssens AC, Aulchenko YS, Elefante S, Borsboom GJ, Steyerberg EW, van Duijn CM. Predictive testing for complex diseases using multiple genes: fact or fiction? Genet Med. 2006 July;8(7):395-400.

    Article  PubMed  Google Scholar 

  40. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009 October 8;461(7265):747-753.

    Article  PubMed  CAS  Google Scholar 

  41. Gulcher J, Stefansson K. Genetic risk information for common diseases may indeed be already useful for prevention and early detection. Eur J Clin Invest. 2010 January;40(1):56-63.

    Article  PubMed  CAS  Google Scholar 

  42. Iakoubova O, Shepherd J, Sacks F. Association of the 719Arg variant of KIF6 with both increased risk of coronary events and with greater response to statin therapy. J Am Coll Cardiol. 2008 June 3;51(22):2195-2196.

    Article  PubMed  CAS  Google Scholar 

  43. Iakoubova OA, Sabatine MS, Rowland CM, et al. Polymorphism in KIF6 gene and benefit from statins after acute coronary syndromes: results from the PROVE IT-TIMI 22 study. J Am Coll Cardiol. 2008 January 29;51(4):449-455.

    Article  PubMed  CAS  Google Scholar 

  44. Iakoubova OA, Robertson M, Tong CH et al. KIF6 Trp719Arg polymorphism and the effect of statin therapy in elderly patients: results from the PROSPER study. Eur J Cardiovasc Prev Rehabil. 2010 March 2.

    Google Scholar 

  45. Shiffman D, Chasman DI, Zee RY, et al. A kinesin family member 6 variant is associated with coronary heart disease in the Women’s Health Study. J Am Coll Cardiol. 2008 January 29;51(4):444-448.

    Article  PubMed  CAS  Google Scholar 

  46. Arnett DK, Baird AE, Barkley RA, et al. Relevance of genetics and genomics for prevention and treatment of cardiovascular disease: a scientific statement from the American Heart Association Council on Epidemiology and Prevention, the Stroke Council, and the Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation. 2007 June 5;115(22):2878-2901.

    Article  PubMed  Google Scholar 

  47. Plump AS, Lum PY. Genomics and cardiovascular drug development. J Am Coll Cardiol. 2009 March 31;53(13):1089-1100.

    Article  PubMed  CAS  Google Scholar 

  48. Guessous I, Gwinn M, Yu W, Yeh J, Clyne M, Khoury MJ. Trends in pharmacogenomic epidemiology: 2001–2007. Public Health Genom. 2009;12(3):142-148.

    Article  CAS  Google Scholar 

  49. Evans WE, Relling MV. Moving towards individualized medicine with pharmacogenomics. Nature. 2004 May 27;429(6990):464-468.

    Article  PubMed  CAS  Google Scholar 

  50. Doevendans PA. Heart therapies may come from genetic studies. Lancet. 1998 January 23;353:300.

    Article  Google Scholar 

  51. Doevendans PA, van Dantzig J, Meijer H, Schaap C. Molecular genetics of human cardiomyopathies. In: Peters R, Piek J, eds. Molecular cardiology in clinical perspective. 1st ed. Amsterdam: Knoll; 1997:33-53.

    Google Scholar 

  52. Fan CT, Lin JC, Lee CH. Taiwan Biobank: a project aiming to aid Taiwan’s transition into a biomedical island. Pharmacogenomics. 2008 February;9(2):235-246.

    Article  PubMed  Google Scholar 

  53. Jaddoe VW, Bakker R, van Duijn CM, et al. The Generation R Study Biobank: a resource for epidemiological studies in children and their parents. Eur J Epidemiol. 2007;22(12):917-923.

    Article  PubMed  Google Scholar 

  54. Jayasinghe SR, Mishra A, Van DA, Kwan E. Genetics and cardiovascular disease: design and development of a DNA biobank. Exp Clin Cardiol. 2009;14(3):33-37.

    PubMed  Google Scholar 

  55. Genetics Kaiser J. US hospital launches large biobank of children’s DNA. Science. 2006 June 16;312(5780):1584-1585.

    Google Scholar 

  56. Ronningen KS, Paltiel L, Meltzer HM, et al. The biobank of the Norwegian Mother and Child Cohort Study: a resource for the next 100 years. Eur J Epidemiol. 2006;21(8):619-625.

    Article  PubMed  CAS  Google Scholar 

  57. Senior K. UK Biobank launched to mixed reception. Lancet Neurol. 2006 May;5(5):390.

    Article  PubMed  Google Scholar 

  58. Triendl R. Japan launches controversial Biobank project. Nat Med. 2003 August;9(8):982.

    Article  PubMed  CAS  Google Scholar 

  59. Hershberger RE, Lindenfeld J, Mestroni L, Seidman CE, Taylor MR, Towbin JA. Genetic evaluation of cardiomyopathy – a Heart Failure Society of America practice guideline. J Card Fail. 2009 March;15(2):83-97.

    Article  PubMed  Google Scholar 

  60. Sullivan D. Guidelines for the diagnosis and management of familial hypercholesterolaemia. Heart Lung Circ. 2007 February;16(1):25-27.

    Article  PubMed  Google Scholar 

  61. Skinner JR. Guidelines for the diagnosis and management of familial long QT syndrome. Heart Lung Circ. 2007 February;16(1):22-24.

    Article  PubMed  Google Scholar 

  62. Mihaescu R, Detmar SB, Cornel MC, van der Flier WM, Heutink P, Hol EM, et al. Translational research in genomics of Alzheimer’s disease: a review of current practice and future perspectives. J Alzheimers Dis 2010; 20(4): 967-80

    Google Scholar 

  63. Zinner DE, Campbell EG. Life-science research within US academic medical centers. JAMA. 2009 September 2;302(9):969-976.

    Article  PubMed  CAS  Google Scholar 

  64. Lauer MS, Skarlatos S. Translational research for cardiovascular diseases at the national heart, lung, and blood institute: moving from bench to bedside and from bedside to community. Circulation. 2010 February 23;121(7):929-933.

    Article  PubMed  Google Scholar 

  65. Janssens AC, van Duijn CM. Genome-based prediction of common diseases: methodological considerations for future research. Genome Med. 2009 February 18;1(2):20.

    Article  PubMed  Google Scholar 

  66. Marks JS. Preventive care – the first step. Manag Care. 2005 September;14(9 Suppl):10-12.

    PubMed  Google Scholar 

  67. Khoury MJ, Gwinn M, Burke W, Bowen S, Zimmern R. Will genomics widen or help heal the schism between medicine and public health? Am J Prev Med. 2007 October;33(4):310-317.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zafarmand, M.H., Becker, K.D., Doevendans, P.A. (2011). Future of Cardiogenetics. In: Baars, H., Doevendans, P., van der Smagt, J. (eds) Clinical Cardiogenetics. Springer, London. https://doi.org/10.1007/978-1-84996-471-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-471-5_28

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-470-8

  • Online ISBN: 978-1-84996-471-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics