Skip to main content

Pathophysiology of postmenopausal osteoporosis

  • Chapter
Atlas of Postmenopausal Osteoporosis

Abstract

The skeleton provides a rigid framework for the body, protecting vital organs, acting as a site for the attachment of muscles, and housing the bone marrow. It contains 99% of total body calcium, and plays a major role in the preservation of calcium and phosphate homeostasis, providing a reservoir from, or into, which these ions can be transported. Hence, in the absence of adequate amounts of calcium absorbed from the intestine, bone lysis will maintain serum calcium levels at the expense of bone strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachrach BE, Smith EP. The role of sex steroids in bone growth and development: evolving new concepts. Endocrinologist 1996; 6:362–8.

    Article  Google Scholar 

  • Bailey DA, McKay HA, Mirwald RL et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan bone mineral accrual study. J Bone Miner Res Oct 1999; 14:1672–9.

    Article  PubMed  CAS  Google Scholar 

  • Baron R, Rawadi G. Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 2007; 148:2635–43.

    Article  PubMed  CAS  Google Scholar 

  • Bilezikian JP, Morishima A, Bell J et al. Increased bone mass a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 1998; 339:599–603.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff-Ferrari HA, Willett WC et al. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA 2005; 293:2257–64.

    Article  PubMed  CAS  Google Scholar 

  • Bjarnarson NH, Alexandersen P, Christiansen C. Number of years since menopause: spontaneous bone loss is dependent but response to hormone replacement therapy is independent. Bone 2002; 2002: 637–42.

    Google Scholar 

  • Boivin G, Meunier PJ. Methodological considerations in measurement of bone mineral content. Osteoporos Int 2003; 14(Suppl 5):S22–8.

    Article  Google Scholar 

  • Bonewald LF. Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci 2007; 1116:281–90.

    Article  PubMed  CAS  Google Scholar 

  • Bonjour JP, Rizzoli R. Bone acquisition in adolescence. In: Osteoporosis, volume 1, 2nd edition. Edited by R Marcus, J Kelsey, D Feldman. San Diego: Academic Press, 2001; 621–38.

    Chapter  Google Scholar 

  • Bonnet N, Pierroz DD, Ferrari SL. Adrenergic control of bone remodeling and its implications for the treatment of osteoporosis. J Musculoskelet Neuronal Interact 2008; 8:94–104.

    PubMed  CAS  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423:337–342.

    Article  PubMed  CAS  Google Scholar 

  • Canalis E, Mazziotti G, Giustina A et al. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 2007; 18:1319–28.

    Article  PubMed  CAS  Google Scholar 

  • Chapuy MC, Arlot ME, Duboeuf F et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med 1992; 327:1637–42.

    Article  PubMed  CAS  Google Scholar 

  • Chevalley T, Bonjour JP, Ferrari S et al. Influence of age at menarche on forearm bone microstructure in healthy young women. J Clin Endocrinol Metab 2008; 93:2594–601.

    Article  PubMed  CAS  Google Scholar 

  • Christiansen C, Christensen MS, McNair PL et al. Prevention of early menopausal bone loss: conducted 2-year study. Eur J Clin Invest 1980; 10:273–9.

    Article  PubMed  CAS  Google Scholar 

  • Clowes JA, Riggs BL, Khosla S et al. The role of the immune system in the pathophysiology of osteoporosis. Immunological Reviews 2005; 208: 207–27.

    Article  PubMed  CAS  Google Scholar 

  • Cohen MM, Jr. The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet A 2006; 140:2646–706.

    PubMed  Google Scholar 

  • Compston JE. Sex steroids and bone. Physiol Rev 2001; 81:419–447.

    PubMed  CAS  Google Scholar 

  • Consensus Development Conference. Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993; 94:646–50.

    Article  Google Scholar 

  • Delmas PD, Eastell R, Garnero P et al. The use of biochemical markers of bone turnover in osteoporosis. Osteoporos Int 2000; 11(Suppl 6):S2–17.

    Article  CAS  Google Scholar 

  • Dufresne TE, Chmielewski PA, Manhart MD et al. Risedronate Preserves Bone Architecture in Early Postmenopausal Women In 1 Year as Measured by Three-Dimensional Microcomputed Tomography. Calcif Tissue Int 2003; 73:423–32.

    Article  PubMed  CAS  Google Scholar 

  • Eghbali-Fatourechi G, Khosla S, Sanyal A et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003; 111:1221–30.

    PubMed  CAS  Google Scholar 

  • Ferrari S. Génétique de l’ostéoporose. In: Traité des maladies métaboliques osseuses de l’adulte. Edited by M C de Vernejoul and P Marie. Paris: Flammarion Médecine-Sciences, 2008a.

    Google Scholar 

  • Ferrari S. Human genetics of osteoporosis. Best Pract Res Clin Endocrinol Metab 2008b; 22:723–35.

    Article  CAS  Google Scholar 

  • Ferrari S. Cellular and molecular mechanisms of osteoporosis. In: Innovation in skeletal medicine. Edited by JY Reginster and R Rizzoli. Issy-Les-Moulineaux: Elsevier Masson, 2008c; 19–46.

    Google Scholar 

  • Ferrari SL, Deutsch S, Antonarakis SE. Pathogenic mutations and polymorphisms in the lipoprotein receptor-related protein 5 reveal a new biological pathway for the control of bone mass. Curr Opin Lipidol 2005; 16:207–14.

    Article  PubMed  CAS  Google Scholar 

  • Garnero P, Sornay-Rendu E, Chapuy M et al. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 1996; 11:337–49.

    Article  PubMed  CAS  Google Scholar 

  • Goltzman D. Studies on the mechanisms of the skeletal anabolic action of endogenous and exogenous parathyroid hormone. Arch Biochem Biophys 2008; 473:218–24.

    Article  PubMed  CAS  Google Scholar 

  • Haaspasalo H, Kannus P, Sievannen H et al. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 1998; 13:310–9.

    Article  Google Scholar 

  • Hamrick MW, Ferrari SL. Leptin and the sympathetic connection of fat to bone. Osteoporos Int 2008; 19:905–12.

    Article  PubMed  CAS  Google Scholar 

  • Heino TJ, Hentunen TA. Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Curr Stem Cell Res Ther 2008; 3:131–45.

    Article  PubMed  CAS  Google Scholar 

  • Hock JM, Krishnan V, Oniya JE et al. Osteoblast apoptosis and bone turnover. J Bone Miner Res 2001; 16:975–84.

    Article  PubMed  CAS  Google Scholar 

  • Hofbauer LC, Gori F, Riggs BL et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 1999; 140:4382–9.

    Article  PubMed  CAS  Google Scholar 

  • Johnston CC, Miller JZ, Slemenda CW et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med 1992; 327:82–7.

    Article  PubMed  Google Scholar 

  • Kanis JA, Burlet N, Cooper C et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2008; 19:399–428.

    Article  PubMed  CAS  Google Scholar 

  • Karasik D, Ferrari SL. Contribution of gender-specific genetic factors to osteoporosis risk. Ann Hum Genet 2008; 72:696–714.

    Article  PubMed  CAS  Google Scholar 

  • Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008; 29:155–92.

    Article  PubMed  CAS  Google Scholar 

  • Khosla S. Estrogen and the death of osteoclasts: a fascinating story. BoneKey 2007; 4:267–72.

    Article  Google Scholar 

  • Khosla S, Riggs BL, Atkinson EJ et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 2006; 21:124–31.

    Article  PubMed  Google Scholar 

  • Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 2006; 99:1233–9.

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Jessop H, Suswillo R et al. Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature 2003; 424:389.

    Article  PubMed  CAS  Google Scholar 

  • Lee WT, Leung SS, Leung DM et al. Bone mineral acquisition in low calcium intake children following the withdrawal of calcium supplement. Acta Paediatr 1997; 86:570–6.

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ominsky MS, Niu QT et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 2008; 23:860–9.

    Article  PubMed  Google Scholar 

  • Li J, Sarosi I, Cattley et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 2006; 39:754–66.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay R, Aitken JM, Anderson JB et al. Long-term prevention of postmenopausal osteoporosis by oestrogen: evidence for an increased bone mass after delayed onset of oestrogen treatment. Lancet 1976; 1:1038–41.

    Article  PubMed  CAS  Google Scholar 

  • Lips P, Hosking D, Lippuner K et al. The prevalence of vitamin D inadequacy amongst women with osteoporosis: an international epidemiological investigation. J Intern Med 2006; 260:245–54.

    Article  PubMed  CAS  Google Scholar 

  • Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000; 21:115–37.

    Article  PubMed  CAS  Google Scholar 

  • Marcus R. The nature of osteoporosis. In: Osteoporosis. Edited by R Marcus, D Feldman, J Kelsey. San Diego: Academic Press, 1996; 647–59.

    Google Scholar 

  • McGuigan FEA, Ralston SH. Genetic susceptibility to osteoporosis. In: Nutritional Aspects of Bone Health. Edited by SA New, JP Bonjour. Cambridge: Royal Society of Chemistry, 2003; 37–63.

    Chapter  Google Scholar 

  • Murshed M, Harmey D, Millan JL et al. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 2005; 19:1093–104.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Imai Y, Matsumoto T et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 2007; 130:811–23.

    Article  PubMed  CAS  Google Scholar 

  • NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285:785–95.

    Article  Google Scholar 

  • Parfitt AM. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 2002; 30:5–7.

    Article  PubMed  CAS  Google Scholar 

  • Pei L, Tontonoz P. Fat’s loss is bone’s gain. J Clin Invest 2004; 113:805–6.

    PubMed  CAS  Google Scholar 

  • Prince RL, Smith M, Dick IM et al. Prevention of postmenopausal osteoporosis: a comparative study of exercise, calcium supplementation, and hormonereplacement therapy. N Engl J Med 1991; 325:1189–95.

    Article  PubMed  CAS  Google Scholar 

  • Quigley MET, Martin PL, Burnier AM et al. Estrogen therapy arrests bone loss in elderly women. Am J Obstet Gynecol 1987; 156:1516–23.

    PubMed  CAS  Google Scholar 

  • Ralston SH. Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 2002; 87:2460–6.

    Article  PubMed  CAS  Google Scholar 

  • Rauch F, Travers R, Glorieux FH. Cellular activity on the seven surfaces of iliac bone: a histomorphometric study in children and adolescents. J Bone Miner Res 2006; 21:513–9.

    Article  PubMed  Google Scholar 

  • Recker R, Lappe J, Davies KM et al. Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res 2004; 19:1628–33.

    Article  PubMed  Google Scholar 

  • Riggs BL, Khosla S, Melton LJ 3rd. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998; 13:763–73.

    Article  PubMed  CAS  Google Scholar 

  • Riggs BL, Khosla S, Melton LJ 3rd et al. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002; 23:279–302.

    Article  PubMed  CAS  Google Scholar 

  • Rizzoli R, Ammann P, Chevalley T et al. Protein intake and bone disorders in the elderly. Joint Bone Spine 2001; 68:383–92.

    Article  PubMed  CAS  Google Scholar 

  • Rizzoli R, Bonjour, J-P. Dietary Protein and Bone Health. J Bone Miner Res 2004; 19:527.

    Article  PubMed  Google Scholar 

  • Rodan S, Duong T, Cathepsin K. A new molecular target for osteoporosis. BoneKey 2008; 5:16–24.

    Article  Google Scholar 

  • Schurch MA, Rizzoli R, Slosman D et al. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998; 128:801–9.

    Article  PubMed  CAS  Google Scholar 

  • Seeman E. Pathogenesis of bone fragility in women and men. Lancet 2002; 359:1841–50.

    Article  PubMed  Google Scholar 

  • Seeman E, Hopper JL. Genetic and environmental components of the population variance in bone density. Osteoporos Int 1997; 7(Suppl 3):S10–6.

    Article  Google Scholar 

  • Seeman E, Delmas PD. Bone quality — the material and structural basis of bone strength and fragility. N Engl J Med 2006; 354:2250–61.

    Article  PubMed  CAS  Google Scholar 

  • Seeman E, Hopper JL, Bach LA et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 1989; 320:554–8.

    Article  PubMed  CAS  Google Scholar 

  • Seibel MJ, Woitge HW. Basic principles and clinical applications of biochemical markers of bone metabolism: biochemical and technical aspects. J Clin Densitometry 1999; 2:299–322.

    Article  CAS  Google Scholar 

  • Sornay-Rendu E, Munoz F, Duboeuf F et al. The rate of bone loss is associated with an increased risk of fracture in postmenopausal women. The OFELY study. Osteoporos Int 2005; 16(Suppl 3):OC35.

    Google Scholar 

  • Standring S (Ed) Gray’s anatomy — the anatomical basis of clinical practice, 39th edition. Edinburgh: Elsevier, 2004.

    Google Scholar 

  • Steingrimsdottir L, Gunnarsson O, Indridason OS et al. Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA 2005; 294:2336–41.

    Article  PubMed  CAS  Google Scholar 

  • Styrkarsdottir U, Cazier J, Konng A et al. Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PloS Biology 2003; 1:1–10.

    Article  Google Scholar 

  • Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet 2003; 4:638–49.

    Article  PubMed  CAS  Google Scholar 

  • Theintz G, Buchs B, Rizzoli R et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 1992; 75:1060–5.

    Article  PubMed  CAS  Google Scholar 

  • Torgerson DJ, Campbell MK, Thomas RE et al. Prediction of perimenopausal fractures by bone mineral density and other risk factors. J Bone Miner Res 1996; 11:293–7.

    Article  PubMed  CAS  Google Scholar 

  • Vanderschueren D, Bouillon R. Androgens and bone. Calcif Tissue Int 1995; 56:341–346.

    Article  PubMed  CAS  Google Scholar 

  • van Meurs JB, Trikalinos T, Ralston SH et al. Large-scale analysis of association between polymorphisms in the LRP-5 and-6 genes and osteoporosis: The GENOMOS Study. JAMA 2008; 299:1277–90.

    Article  PubMed  Google Scholar 

  • Weitzmann MN, Pacifici R. The role of T lymphocytes in bone metabolism. Immunol Rev 2005; 208:154–68.

    Article  PubMed  CAS  Google Scholar 

  • Wiren KM, Orwell ES. Skeletal biology of androgens. In: Osteopenia. Edited by R Marcus, D Feldman and J Kelsey. San Diego: Academic Press, 2001;339–359.

    Chapter  Google Scholar 

  • Yadav VK, Ryu JH, Suda N et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 2008; 135:825–37.

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Karsenty G. Transcription factors in bone: developmental and pathological aspects. Trends Mol Med 2002; 8:340–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Current Medicine Group

About this chapter

Cite this chapter

Ferrari, S., Ringe, J.D. (2010). Pathophysiology of postmenopausal osteoporosis. In: Rizzoli, R. (eds) Atlas of Postmenopausal Osteoporosis. Springer Healthcare, Tarporley. https://doi.org/10.1007/978-1-907673-28-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-907673-28-3_1

  • Publisher Name: Springer Healthcare, Tarporley

  • Print ISBN: 978-1-85873-443-9

  • Online ISBN: 978-1-907673-28-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics