Skip to main content

Physiopathology of gout

  • Chapter
  • First Online:
Managing Gout in Primary Care

Abstract

Gout can be defined as the presence of monosodium urate crystals (MSUCs) in tissues. These MSUCs may induce acute inflammation when shed into the synovial fluid or cause aggregate-inducing chronic tissue inflammation. The nucleation and formation of MSUCs is related to the presence of longstanding hyperuricemia, which is an essential factor in the development of gout. Other factors, such as level of hyperuricemia, time exposed to hyperuricemia, and genetic or acquired tissue predisposition for the nucleation of MSUCs, may explain why not all patients with hyperuricemia develop gout, or why some patients develop early or rapidly progressive symptoms associated with gout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate–anion exchanger that regulates blood urate levels. Nature. 2002;417:447-452.

    Google Scholar 

  • Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008;283:26834-26838.

    Google Scholar 

  • Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5:e1000504.

    Google Scholar 

  • Ichida K, Matsuo H, Takada T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3:764.

    Google Scholar 

  • Enomoto A, Endou H. Roles of organic anion transporters (OAT s) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol. 2005;9:195-205.

    Google Scholar 

  • Perez-Ruiz F, Alonso-Ruiz A, Calabozo M, Herrero-Beites A, Garcia-Erauskin G, Ruiz-Lucea E. Efficacy of allopurinol and benzbromarone for the control of hyperuricaemia. A pathogenic approach to the treatment of primary chronic gout. Ann Rheum Dis. 1998;57:545-549.

    Google Scholar 

  • Witkowska K, Smith KM, Yao SYM, et al. Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses. Am J Physiol Renal Physiol. 2012;303:F527-F539.

    Google Scholar 

  • Nakanishi T, Ohya K, Shimada S, Anzai N, Tamai I. Functional cooperation of URAT 1 (SLC22A12) and URATv1 (SLC2A9) in renal reabsorption of urate. Nephrol Dial Transplant. 2013;28:603-611. 9 Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med. 2009;1:5ra11.

    Google Scholar 

  • Pascual E, Martínez A, Ordóñez S. Gout: the mechanism of urate crystal nucleation and growth. A hypothesis based in facts. Joint Bone Spine. 2013;80:1-4.

    Google Scholar 

  • Johnson RJ, Andrews P, Benner SA, Oliver W. Theodore E. Woodward Award: The evolution of obesity: insights from the mid-Miocene. Trans Am Clin Climat Assoc. 2010;121:295-308.

    Google Scholar 

  • Wortmann RL, Fox IH. Limited value of uric acid to creatinine ratios in estimating uric acid excretion. Ann Intern Med. 1980;93:822-825.

    Google Scholar 

  • Perez-Ruiz F, Calabozo M, Garcia Erauskin G, Ruibal A, Herrero-Beites AM. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum. 2002;47:610-613.

    Google Scholar 

  • Moriwaki Y, Yamamoto T, Takahashi S, Yamakita J, Tsutsumi Z, Hada T. Spot urine uric acid to creatinine ratio used in the estimation of uric acid excretion in primary gout. J Rheumatol. 2001;28:1306-1310.

    Google Scholar 

  • Simkin PA, Hoover PL, Paxson CS, Wilson WF. Uric acid excretion: quantitative assessment from spot, midmorning serum and urine samples. Ann Intern Med. 1979;91:44-47.

    Google Scholar 

  • Yamamoto T, Moriwaki Y, Takahashi S, et al. A simple method of selecting gout patients for treatment with uricosuric agents, using spot urine and blood samples. J Rheumatol. 2002;29:1937-1941.

    Google Scholar 

  • Perez-Ruiz F, Herrero-Beites AM. Reply to letter: new standards for uric acid excretion and evidence for an inducible transporter. Arthritis Care Res. 2003;49:736-737.

    Google Scholar 

  • Kannangara DRW, Ramasamy SN, Indraratna PL, et al. Fractional clearance of urate: validation of measurement in spot-urine samples in healthy subjects and gouty patients. Arthritis Res Ther. 2012;14:R189.

    Google Scholar 

  • Gutman AB, YÏ‹ TF. Gout, a derangement of purine metabolism. Adv Inter Med. 1952;7:227-302.

    Google Scholar 

  • Choi HK, Liu S, Curhan G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005;52:283-289.

    Google Scholar 

  • Martin WJ, Shaw O, Liu X, Steiger S, Harper JL. Monosodium urate monohydrate crystal–recruited non-inflammatory monocytes differentiate into M1-like pro-inflammatory macrophages in a peritoneal murine model of gout. Arthritis Rheum. 2011;63:1322-1332.

    Google Scholar 

  • Pascual E. Persistence of monosodium urate crystals and low-grade inflammation in synovial fluid of patients with untreated gout. Arthritis Rheum. 1991;34:141-145.

    Google Scholar 

  • Puig JG, de Miguel E, Castillo MC, Lopez Rocha A, Martinez MA, Torres RJ. Asymptomatic hyperuricemia: impact of ultrasonography. Nucleosides Nucleotides Nucleic Acids. 2008;27: 592-595.

    Google Scholar 

  • Reginato AM, Olsen BR. Genetics and experimental models of crystal-induced arthritis. Lessons learned from mice and men: is it crystal clear? Curr Opin Rheumatol. 2009;19:134-145.

    Google Scholar 

  • Schumacher HR. Pathology of the synovial membrane in gout. Light and electron microscopic studies. Arthritis Rheum. 1975;18:771-782.

    Google Scholar 

  • Dalbeth N, Pool B, Gamble G, et al. Cellular characterization of the gouty tophus: a quantitative analysis [abstract]. Arthitis Rheum. 2009;60(suppl 10:1948.

    Google Scholar 

  • So A, Busso N. A magic bullet for gout? Ann Rheum Dis. 2009;68:1517-1519.

    Google Scholar 

  • Perez-Ruiz F, Martin I, Canteli B. Ultrasonographic measurement of tophi as an outcome measure for chronic gout. J Rheumatol. 2007;34:1888-1893.

    Google Scholar 

  • Dalbeth N, Clark B, Gregory K, et al. Mechanisms of bone erosions in gout: a quantitative analysis using plain radiography and computed tomography. Ann Rheum Dis. 2009;68: 1290-1295.

    Google Scholar 

  • Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA . Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthitis Care Res (Hoboken). 2010;62:170-180.

    Google Scholar 

  • Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA . Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum. 2009;61:885-892.

    Google Scholar 

  • Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63:3136-3141.

    Google Scholar 

  • Krishnan E, Baker JF, Furst DE, Schumacher HR. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 2006;54:2688-2696.

    Google Scholar 

  • Krishnan E. Gout and the risk for incident heart failure and systolic dysfunction. BMJ Open. 2012;2:e000282.

    Google Scholar 

  • Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116:894-900.

    Google Scholar 

  • Wright SA, Filippucci E, McVeigh C, et al. High resolution ultrasonography of the first metatarsal phalangeal joint in gout: a controlled study. Ann Rheum Dis. 2007;66:859-864.

    Google Scholar 

  • Chen SY, Chen CL, Shen ML. Severity of gouty arthritis is associated with Q-wave myocardial infarction: a large-scale, cross-sectional study. Clin Rheumatol. 2007;26:308-313.

    Google Scholar 

  • Perez-Ruiz F, Martinez-Indart L, Carmona L, Herrero-Beites AM, Pijoan JI, Krishnan E. Tophaceous gout and high level of hyperuricaemia are both associated with increased risk of mortality in patients with gout [published online ahead of print January 12, 2013]. Ann Rheum Dis. doi:10.1136/annrheumdis-2012-202421.

  • Pascual E, Castellano JA. Treatment with colchicine decreases white cell counts in synovial fluid of asymptomatic knees that contain monosodium urate crystals. J Rheumatol. 1992;19:600-603.

    Google Scholar 

  • Crittenden DB, Lehmann RA, Schneck L, et al. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. J Rheumatol. 2012;39:1458-1464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Perez-Ruiz .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Healthcare

About this chapter

Cite this chapter

Perez-Ruiz, F., Herrero-Beites, A.M. (2014). Physiopathology of gout. In: Managing Gout in Primary Care. Springer Healthcare, Tarporley. https://doi.org/10.1007/978-1-907673-67-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-907673-67-2_2

  • Published:

  • Publisher Name: Springer Healthcare, Tarporley

  • Print ISBN: 978-1-907673-66-5

  • Online ISBN: 978-1-907673-67-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics