Skip to main content

Radiant Energy, Its Receipt and Disposal

  • Chapter
Agricultural Meteorology

Part of the book series: Meteorological Monographs ((METEOR,volume 6))

Abstract

Every organism, plant or animal, on the surface of the earth is immersed in a radiation environment consisting of solar radiation and of longwave thermal energy from nearby surfaces. The total radiation flux within a given site is highly variable, changing with time of day, season, weather and other factors. The variation of the total radiation flux from one site to another on the earth’s surface is enormous and the plant and animal distribution responds accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ă…ngstrom, A., 1905: Ueber die Anwendung der elektrischen Kompensationsmethode zur Bestimmung der nächtlichen Ausstrahlung. Nova Acta Soc. Sci. Uppsala, Ser. 4, 1, No. 2.

    Google Scholar 

  • Angstrom, A., 1915: The study of radiation of the atmosphere. Smithsonian Misc. Coll., 65, No. 3, 1–159.

    Google Scholar 

  • Angstrom, A., 1922: Note on the relation between time of sunshine and cloudiness in Stockholm, 1908–1920. Archiv. Matemat., Astron. and Physik, 17, No. 15.

    Google Scholar 

  • Aubertin, G. M., and D. B. Peters, 1961: Net radiation determinations in a cornfield. Agr. J., 53, 269–272.

    Article  Google Scholar 

  • Baumgartner, A., 1952: Die Strahlungsbilanz in einer Fichtendickung. Forstwissenschaftl. Centralblatt., 71, 337–349.

    Article  Google Scholar 

  • Black, J. N., 1956: The distribution of solar radiation over the earth’s surface. Archiv. Meteor. Geophys., Bioklim., Ser. B, 7, 165.

    Article  Google Scholar 

  • Blum, H. F., 1959: Carcinogenesis by Ultraviolet Light. Princeton, Princeton Univ. Press, 340 pp.

    Book  Google Scholar 

  • Bond, T. E., and C. P. Kelly, 1955: Globe thermometer in agricultural research. Agr. Eng., 36, 251–255 and 260.

    Google Scholar 

  • Bowen, I. S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev., 27, 779–787.

    Article  Google Scholar 

  • BrodfĂ¼hrer, J., 1955: Der Einfluss einer Abgestuften Dosierung von ultravioletter Sonnenstrahlung auf das Wachstum der Pflanzen. Planta, 45, 1–56.

    Article  Google Scholar 

  • Brooks, F. A., 1959; An Introduction to Physical Microclimatology. Univ. Calif., Davis, 264 pp.

    Google Scholar 

  • Brunt, D., 1932: Notes on radiation in the atmosphere. Quart. J. R. Meteor. Soc., 58, 389–418.

    Article  Google Scholar 

  • Budyko, M. T., 1955: Atlas of the heat balance. Leningrad, USSR.

    Google Scholar 

  • Budyko, M. T., 1956: The heat balance of the earth’s surface. [Translation PB 131692] U. S. Dept. Corn., Off. Tech. Serv., Washington, D. C.

    Google Scholar 

  • Burdecki, F., 1956: Remarks on the distribution of solar radiation over the surface of the earth. Archiv. Meteor. Geophys., Bioklim., Ser. B, 8, 326–335.

    Article  Google Scholar 

  • Colwell, R. N., 1961: Some practical applications of multiband spectral reconnaissance. Amer. Sci., 49, 9–36.

    Google Scholar 

  • Condas, G. A., 1964: Maximum spectral luminous efficiency. J. Opt. Soc. Amer., 54, 1168 L.

    Article  Google Scholar 

  • de Vries, D. A., 1955: Solar radiation at Wageningen Mededelingen van de Landbouwhogeschool. Wageningen, 55, 277–304.

    Google Scholar 

  • Dunkelman, L., and R. Scolnik, 1959: Solar spectral irradiance and vertical atmospheric attenuation in the visible and ultraviolet. J. Opt. Soc. Amer., 49, 356–367.

    Article  Google Scholar 

  • Elder, T., and J. Strong, 1953: The infrared transmission of atmospheric windows. J. Franklin Inst., 255, 189–208.

    Article  Google Scholar 

  • Elsässer, W. M., 1942: Heat transfer by infrared radiation in the atmosphere. Harvard Meteor. Studies, No. 6, Cambridge, Mass., Harvard Univ. Press, 107 pp.

    Google Scholar 

  • Elsässer, W. M., 1960: Atmospheric radiation tables. Meteor. Monogr., 23, Boston, Amer. Meteor. Soc., 44 pp.

    Google Scholar 

  • Evans, L. T., 1963: Environmental Control of Plant Growth. New York, Academic Press, 441 pp.

    Google Scholar 

  • Fleischer, R., 1958: Die atmospharische gegenstrahlung. Ann. der Meteor. Medizin-Meteor., 13, 142–148.

    Google Scholar 

  • Fons, W. L., H. D. Bruce and A. McMasters, 1960: Tables for estimating direct beam solar irradiation on slopes at 30° to 46° latitude. Pacific Southwest Forest and Range Exp. Sta. Forest Service, U. S. Dept. of Agr., Berkeley, Calif., 298 pp.

    Google Scholar 

  • Fowle, F. E., 1915: The transparency of aqueous vapor. Astrophys. J., 42, 394–441.

    Article  Google Scholar 

  • Fritschen, L. J., 1960: Construction and calibration details of the thermal transducer type net radiometer. Bull. Amer. Meteor. Soc., 41, 180–183.

    Google Scholar 

  • Fritschen, L. J., and C. H. M. van Bavel, 1964: Energy balance as affected by height and maturity of Sudangrass. Agron. J., 56, 202–204.

    Article  Google Scholar 

  • Fritschen, L. J., and W. R. van Wijk, 1959: Use of an economical thermal transducer as a net radiometer. Bull. Amer. Meteor. Soc., 40, 291–294.

    Google Scholar 

  • Fritz, S., 1949: Solar radiation during cloudless days. Heat. and Vent., 45, 69–74.

    Google Scholar 

  • Fritz, S., and T. H. MacDonald, 1949: Average solar radiation in the United States. Heat. and Vent., 46, 61–64.

    Google Scholar 

  • Funk, J. P., 1959: Improved polyethylene-shielded net radiometer. J. Sci. Instr., 36, 267–270.

    Article  Google Scholar 

  • Gaastra, P., 1959: Photosynthesis of Crop Plants as Influenced by Light, Carbon Dioxide, Temperature, and Stomatal Diffusion Resistance. Wageningen, Holland, H. Veenman en Zonen N. V., 68 pp.

    Google Scholar 

  • Gates, D. M., 1960: The infrared atmospheric transmission to solar radiation. J. Opt. Soc. Amer., 50, 867–882.

    Google Scholar 

  • Gates, D. M., 1962: Energy Exchange in the Biosphere. New York, Harper and Row, 151 pp.

    Google Scholar 

  • Gates, D. M., 1964: Energy, temperature and organisms. The Science Teacher, 31, No. 4.

    Google Scholar 

  • Gates, D. M., R. F. Calfee, D. W. Hansen and W. S. Benedict, 1964: Line parameters and computed spectra for water vapor bands at 2.7 µ. Natl. Bur. Stds. Monog., 71, U. S. Govt. Print. Off., 126 pp.

    Google Scholar 

  • Gates, D. M., and W. J. Harrop, 1962: Infrared transmission of the atmosphere to solar radiation. Appl. Opt., 2, 887–898.

    Article  Google Scholar 

  • Gates, D. M., H. J. Keegan, J. C. Schleter and V. R. Weidner, 1965: Spectral properties of plants. Appl. Opt. 5, in press.

    Google Scholar 

  • Gates, D. M., and W. Tantraporn, 1952: The reflectivity of deciduous trees and herbaceous plants in the infrared to 25 microns. Science 115, 613–616.

    Article  Google Scholar 

  • Geiger, R., 1957: The Climate Near the Ground. Cambridge, Mass., Harvard Univ. Press, 494 pp.

    Google Scholar 

  • Gier, J. T., and R. V. Dunkle, 1951: Total hemispherical radiometers. Trans. Amer. Inst. Elec. Engrs., 70, 339.

    Article  Google Scholar 

  • Goodell, B. C., 1962: An inexpensive totalizer of solar and thermal radiation. J. Geophys. Res., 67, 1383–1387.

    Article  Google Scholar 

  • Hand, I., 1954: Insolation on cloudless days at the time of solstices and equinoxes. Heat. and Vent., 51, 97–100.

    Google Scholar 

  • Haurwitz, B., 1948: Insolation in relation to cloud type. J. Meteor., 5, 110–113.

    Article  Google Scholar 

  • Hofmann, G., 1952: Ein Strahlungsbilanzmesser fĂ¼r Forstmeteorologische Untersuchunger. Forstwissenschaftl. Centralblatt, 71, 330–337.

    Article  Google Scholar 

  • Howard, J. N., D. E. Birch and D. Williams, 1956: Infrared transmission of synthetic atmospheres. J. Opt. Soc. Amer., 46, 186–190, 237–245, 334–338.

    Article  Google Scholar 

  • Hulst, H. C. van de, 1957: Light Scattering by Small Particles. New York, John Wiley and Sons, Inc., 470 pp.

    Google Scholar 

  • Johnson, F. S., 1954: The solar constant. J. Meteor., 11, 431–439.

    Article  Google Scholar 

  • Karoli, A. R., A. K. Angstrom and A. J. Drummond, 1960: Dependence on atmospheric pressure of the response characteristics of thermopile radiant energy detectors. J. Opt. Soc. Amer., 50, 758–763.

    Article  Google Scholar 

  • Kimball, H. H., and H. E. Hobbs, 1923: A new form of thermoelectric recording pyrheliometer. Mon. Wea. Rev., 51, 239–242.

    Article  Google Scholar 

  • Krinov, E. L., 1957: Spectral Reflectance Properties of Natural Formations. Laboratoriia Aerometodov, Akad. Nauk SSSR, Moscow. [Translated by E. Belkov, Natl. Res. Council Canada, Doc. No. T-439 (1953).]

    Google Scholar 

  • Kuhn, P. M., and V. E. Suomi, 1958: Airborne observations of albedo with a beam reflector. J. Meteor., 15, 172–174.

    Article  Google Scholar 

  • Lee, R., 1963: Evaluation of solar beam irradiance as a climatic parameter of mountain water sheds. Hydrology Papers No. 2, Ft. Collins, Colo. State Univ., 50 pp.

    Google Scholar 

  • List, R. J., 1958: Smithsonian Meteorological Tables. 6th revised ed., Smithsonian Misc. Coll., 114, 527 pp.

    Google Scholar 

  • Liu, B. Y. H., and R. C. Jordan, 1960: The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation. Solar Energy, 4, 1–19.

    Article  Google Scholar 

  • Lonnquist, O., 1954: Synthetic formulae for estimating effective radiation to a cloudless sky and their usefulness in comparing various estimation procedures. Archiv. Geophys., 2, 245–294.

    Google Scholar 

  • Luckiesh, M., 1946: Applications of Germicidal, Erythemal, and Infrared Energy. New York, D. Van Nostrand Co., 463 pp.

    Google Scholar 

  • McClellan, W. D., J. P. Meiners and D. G. Orr, 1963: Spectral reflectance studies on plants. Proc. Second Symp. on Remote Sensing of Environment 4864–3-X. Infrared Laboratory, Inst. Sci. and Tech., Univ. of Mich., 403–413.

    Google Scholar 

  • Monteith, J. L., 1959a: Solarimeter for field use. J. Sci. Instr., 36, 341–346.

    Article  Google Scholar 

  • Monteith, J. L., 1959b: The reflection of shortwave radiation by vegetation. Quart. J. R. Meteor. Soc., 85, 386–392.

    Article  Google Scholar 

  • Monteith, J. L., and G. Szeicz, 1962a: Simple devices for radiation measurement and integration. Archiv. Meteor., Geophys., Bioklim., Ser. B, 11, 491–500.

    Article  Google Scholar 

  • Monteith, J. L., and G. Szeicz, 1962b: Radiative temperature in the heat balance of natural surfaces. Quart. J. R. Meteor. Soc., 88, 496–507.

    Article  Google Scholar 

  • Robinson, G. D., 1947: Notes on the measurement and estimation of atmospheric radiation. Quart. J. R. Meteor. Soc., 73, 127–150.

    Article  Google Scholar 

  • Robinson, G. D., 1950: Notes on the measurement and estimation of atmospheric radiation—2. Quart. J. R. Meteor. Soc., 76, 37–51.

    Article  Google Scholar 

  • Robitsch, M., 1932: Ueber den Bimetallaktimographen FuessRobitsch. Beitr. Geophys., 35, 387.

    Google Scholar 

  • Sauberer, F., and O. Hartel, 1959: Pflanze und Strahlung. Adademische verlagsgesellschaft. Geest and Partig K.-G., 268 pp.

    Google Scholar 

  • Savinov, S. I., 1933: Concerning formulas for direct and scattered radiation and dependence on cloudiness. Meteor. Vestnik., Nos. 5–6.

    Google Scholar 

  • Scholte Ubing, D. W., 1961a: Short wave and net radiation under glass as compared with radiation in the open. Agr. J., 53, 295–297.

    Article  Google Scholar 

  • Scholte Ubing, D. W., 1961b: Solar and net radiation, available energy and its influence on evapotranspiration from grass. Neth. J. Agr. Sci., 9, 81–93.

    Google Scholar 

  • Schulze, R., 1953: Ueber ein Strahlungsmessgerät mit ultrarotdwichlässigar wind schutzhaube am Meteorologischen Observatorium Hamburg. Geofis. pura e appl., 24, 107.

    Article  Google Scholar 

  • Stair, R., R. G. Johnston and T. C. Bagg, 1954: Spectral distribution of energy from the sun. J. Res. NBS, 53, 113–119.

    Google Scholar 

  • Suomi, V. E., M. Franssila and N. F. Islitzer 1954: An improved net radiation instrument. J. Meteor., 11, 276–282.

    Article  Google Scholar 

  • Suomi, V. E., and P. M. Kuhn, 1958: An economical net radiometer. Tellus, 10, 160–163.

    Article  Google Scholar 

  • Swinbank, W. C., 1963: Longwave radiation from clear skies. Quart. J. R. Meteor. Soc., 89, 339–348.

    Article  Google Scholar 

  • Tanner, C. B., and E. R. Lemon, 1962: Radiant energy utilized in evapotranspiration. Argon. J., 54, 207–212.

    Google Scholar 

  • Trickett, E. S., L. J. Moulsley and R. I. Edwards, 1957: Measurement of solar and artificial radiation with particular reference to agriculture and horticulture. J. Agr. Eng. Res., 2, 86–110.

    Google Scholar 

  • Uchijima, Z., 1963: An investigation on annual variations in water temperature and heat balance items of shallow water. Bull. Natl. Inst. Agr. Sci. (Japan), Ser. A, No. 10.

    Google Scholar 

  • van de Hulst, H. C. [see Hulst, H. C. van de].

    Google Scholar 

  • van Wijk, W. R. [see Wijk, W. R. van].

    Google Scholar 

  • Waggoner, P. E., P. M. Miller and H. C. DeRoo, 1960: Plastic mulching. Bull. 634, Conn. Agr. Exp. Sta., New Haven, 44 pp.

    Google Scholar 

  • Waggoner, P. E., D. N. Moss and J. D. Hesketh, 1963. Radiation in the plant environment. Agron. J., 55, 36–39.

    Article  Google Scholar 

  • Waggoner, P. E., A. B. Pack and W. E. Reifsnyder, 1959: The climate of shade. Bull. 626, Conn. Agr. Exp. Sta. New Haven, 39 pp.

    Google Scholar 

  • Waggoner, P. E., and W. E. Reifsnyder, 1961: Difference between net radiation and water use caused by radiation from the soil surface. Soil Sci., 91, 246–250.

    Article  Google Scholar 

  • Wassink, E. C., 1953: Specification of radiant flux and radiant flux density in irradiation of plants with artificial light. J. Hort. Sci., 28, 177–184.

    Google Scholar 

  • Wijk, W. R. van, 1963: Physics of the Plant Environment. Amsterdam, North-Holland Publ. Co., and New York, John Wiley and Sons., Inc., 382 pp.

    Google Scholar 

  • Yamamoto, G., 1952: On the radiation chart. Sci. Rep. Tohoku Univ., Ser. 5, Geophy., 4, 9–23.

    Google Scholar 

  • Yocum, C. S., L. H. Allen and E. R. Lemon, 1964: Photosynthesis under field conditions VI: Solar radiation balance and photosynthetic efficiency. Agron. J., 56, 249–259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1965 American Meteorological Society

About this chapter

Cite this chapter

Gates, D.M. (1965). Radiant Energy, Its Receipt and Disposal. In: Agricultural Meteorology. Meteorological Monographs, vol 6. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-58-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-58-7_1

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-58-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics