Skip to main content

Advances and Progresses in Sheet and Tube Hydroforming Processes

  • Conference paper
Advances in Material Forming

Abstract

The Sheet Hydroforming (SHF) and Tube Hydroforming (THF) are more and more commonly used in industry to produce complex sheet or tubular metallic components with High Limit Drawing ratio or large diameter expansions. The large variety of metallic materials that can be used and the complexity of the shapes that can be produced, avoiding the use of complex process sequences render the hydroforming processes well suited for numerous application fields, where the complexity of the parts requires the combination of processes to get lightweight components. The paper presents a synthesis and last developments in terms of hydroforming technologies, materials and limits of formability, as well as modeling strategies accounting the pressure and fluid flow effects. One also focuses on the identification, optimization and then control strategies that are now used in process design development to render as efficient as possible the whole hydroforming process chain. The developments are related to the contribution of Esaform research community and more generally international scientific community during the last ten years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Nakamura, T. Nakagawa, “Reverse Deep Drawing with Hydraulic Counter Pressure using Peripheral Pushing Effect”. Ann. CIRP 35/1 (1986), 173–176.

    Google Scholar 

  2. N. Alberti, A. Forcelises, L. Fratini, F. Gabrielli, Sheet Metal Forming of Titanium Blanks using Flexible Media, Annals of the CIRP 47/1 (1998)., 217–220.

    Google Scholar 

  3. J. Tirosh, P. Konvila, “On the Hydrodynamic Deep Drawing Process”, Int. J. Mech. Sci., 27 (1985), 595–608.

    Article  Google Scholar 

  4. S. Yossifon, J. Tirosh, “Buckling Prevention by Lateral Pressure in Hydroforming Deep Drawing”, Int. J. Mech. Sci., 27 (1985), 177–185.

    Article  Google Scholar 

  5. S. Yossifon, J. Tirosh, “Rupture Instability in Hydroforming Deep Drawing Process”, Int. J. Mech. Sci., 27 (1985), 559–570.

    Article  Google Scholar 

  6. J.C. Gelin, P. Delassus, Modeling and simulation of the Aquadraw deep drawing process, Annals of the CIRP, Vol. 42/1 (1993), 305–309.

    Google Scholar 

  7. J.C. Gelin, P. Delassus, J.F. Fontaine, Experimental and numerical modeling of the effects of process parameters in the aquadraw deep drawing process, J. Mater. Process. Techno L, 45 (1994), 329–334.

    Article  Google Scholar 

  8. F. Dohmann, C. Hartl, Hydroforming — a method to manufacture lightweight parts, Journal of Materials Processing Technology, 60–61 (1996), 669–676.

    Article  Google Scholar 

  9. F. Dohmann, C. Hartl, Tube hydroforming — research and practical application, Journal of Materials Processing Technology, 71-1 (1997), 174–186.

    Article  Google Scholar 

  10. M. Merklein, M. Geiger, New materials and production technologies for innovative lightweight construction, Manufacturing if lightweight components by metal forming, Journal of Materials Processing Technology, 125–126 (2002), 532–536.

    Article  Google Scholar 

  11. M. Merklein, M. Geiger, A. Klaus, Manufacturing of lightweight components by metal forming, Annals of the CIRP 52/2 (2003), 521–542.

    Google Scholar 

  12. K.I Manabe, M. Amino, Effects of process parameters and material properties on deformation process in tube hydroforming, Journal of Materials Processing Technology, Vol 123 (2002), 285–291.

    Article  Google Scholar 

  13. T. Sokolowski, K. Gerke, M. Ahmetoglu, T. Atlan, Evolution of tube formability and material characteristics by hydraulic bulge testing of tubes Journal of Materials Processing Technology, 92 (2000), 34–40.

    Article  Google Scholar 

  14. N. Asnafi, Analytical modeling of tube hydroforming, Thin-walled Structures 34 (1999), 295–330.

    Article  Google Scholar 

  15. M. Koc, T. Atlan, Prediction of forming limits and parameters in tube hydroforming process, Int. J. Mach. Tool Des. Res., 42 (2002), 123–138.

    Article  Google Scholar 

  16. L.P. Lei, B.S. Kang, S.J. Kang, Prediction of the forming limit in hydroforming processes using the finite element method and a ductile fracture criterion, Journal of Materials Processing Technology, 113 (2001), 673–679.

    Article  Google Scholar 

  17. N. Boudeau, A. Lejeune, J.C. Gelin, Influence of material and process parameters on the development of necking and bursting in flange and tube hydroforming, J. of Materials Processing and Technology, Vol. 125–126 (2002), 849–855.

    Article  Google Scholar 

  18. A. Lejeune, N. Boudeau, J.C. Gelin, Influence of material and process parameters on bursting during hydroforming process, Journal of Materials Processing Technology, Vol. 143–144(2003), 11–17.

    Article  Google Scholar 

  19. E.J. Vinarcik, Automotive light metal advances, Part I, Innovative designs and emerging technologies, Light Metal Age 60 (2002), 38–41.

    Google Scholar 

  20. B.S. Kang, B.M. San, J. Kim, A comparative study of stamping and hydroforming processes for an automobile fuel tank using FEM, Int. J. of Machine Tools & Manufacture, 44 (2004), 87–94.

    Article  Google Scholar 

  21. P. Groche, M. Ertugrul, C. Metz, Increase of Process Stability of Sheet Metal Hydroforming due to Feed Back Control, Steel Research International. Vol. 76-12 (2005), 879–883.

    Google Scholar 

  22. P. Groche, R. Steinheimer, D. Schmoeckel, Process Stability in the Tube Hydroforming Process, Annals of the CIRP, Vol. 52/1 (2005), 229–232.

    Google Scholar 

  23. M.R. Jensen, L. Olovsson, J. Danckert, L. Nilsson, Numerical model for axisymmetrical deep drawing processes, Int. J. Forming Processes, Vol 2, n∘3–4 (1999), 193–210.

    Google Scholar 

  24. L. Lang, J Danckert, K B Nielsen, Investigation into sheet hydroforming based on hydromechanical deep drawing with uniform pressure on the blank, Journal of Engineering Manufacture, 218-8 (2004), 833–844.

    Google Scholar 

  25. M. Ben Tahar, E. Massoni, Numerical and experimental study of sheet metal hydroforming, Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, AIP Conference Proceedings, 712 (2004) 1160–1165

    Google Scholar 

  26. E. Ceretti, C. Contri, C. Giardini, Tube hydroforming on an AL7003 extracted, Journal of Materials Processing Technology, 177 (2006), 672–675.

    Article  Google Scholar 

  27. L. Filice, L. Fratini, F. Micari, A simple experiment to characterize material formability in tube hydroforming, Annals of the CIRP, 50/1 (2001), 181–184.

    Google Scholar 

  28. Massoni, E; Aliaga, C, 2D finite element simulation of tube hydroforming process In Simulation of Materials Processing: Theory, Methods and Applications (USA), A.A. Balkema Publishers, (1998), 893–898.

    Google Scholar 

  29. J.C. Gelin, C. Labergere, S. Thibaud, Recent advance in process design for sheet and tube hydroforming, in Advances in Material Forming Processes, ed. By D. Banabic, Springer Verlag, to be published (2007)

    Google Scholar 

  30. R. Neugebauer, A Sterzing, M. Siefert, P. Kurka, The potential and application of temperature supported hydroforming of magnesium alloys, In Proc. Of the 8th Int. Conf. on Technology of Plasticity, Ed. By PF. Bariani, Edizioni Progretto Padovo, (2005), 293.

    Google Scholar 

  31. Y.-M. Hwang and W.-C. Chen, Analysis of tube hydroforming in a square cross-sectional die, Int. J. Plast. 21 (2005), 1815–1833.

    Article  MATH  Google Scholar 

  32. M. Jansson, L. Nilsson and K. Simonsson, On constitutive modelling of aluminium alloys for tube hydroforming applications, Int. J. Plast. 21, 1041–1058 (2005).

    Article  MATH  Google Scholar 

  33. M.-G. Lee, C.-S. Han, K. Chung, J.R. Youn and T.J. Kang, Influence of back stresses in parts forming on crashworthiness, J. Mat. Proc. Tech. 168 (2005), 49–55

    Article  Google Scholar 

  34. Y. Choi, C.S. Han, J.K. Lee, R.H, Wagoner, Modelling multi-axial deformation of planar anisotropic elasto-plastic materials, part II: Applications, International Journal of Plasticity, 22–29 (2006), 1765–1783.

    Article  Google Scholar 

  35. L.P. Lei, B.S. Kang, S.J. Kang, Prediction of forming limit in hydroforming processes using the finite element method and a ductile fracture criterion, Journal of Materials Processing Technology, 113 (2001), 673–679.

    Article  Google Scholar 

  36. L.P. Lei, B.S. Kang, S.J. Kang, Bursting failure prediction in tube hydroforming processes by using rigid-plastic FEM combined with ductile fracture criterion, International Journal of Mechanical Sciences, 44–47, (2002), 1411–1428.

    Article  Google Scholar 

  37. J. Kim, S.W. Kim, W.J. Song, B.S. Kang, Analytical and numerical approach to prediction of forming limit in tube hydroforming, International Journal Mechanical Science, 47-7 (2005), 1023–1037.

    Article  Google Scholar 

  38. J.C. Gelin, C. Labergere, Application of optimal design and control strategies to the hydroforming of thin walled metallic tubes, Int. J. Forming Processes, Vol. 7 n∘ 1–2 (2004), 141–158.

    Article  Google Scholar 

  39. C. Labergere, A. Lejeune, J.C. Gelin, Optimization and control of flange and tube hydroforming processes, J. Steels and Related Materials, Vol, 2 (2004), 221–227.

    Google Scholar 

  40. J.C. Gelin, C. Labergere, S. Thibaud, Modelling and control for the hydroforming of metallic liners used for hydrogen storage, J. of materials Processing Technology, Vol. 177 (2006), 697–700.

    Article  Google Scholar 

  41. J.B. Yang, B.H. Jeon, S.I. Oh, Design sensitivity analysis and optimization of the hydroforming process, Journal of Materials Processing Technology, 113/1–3 (2001), 666–672.

    Article  Google Scholar 

  42. S. Jirathearanat, T. Altan, Optimization of Loading Paths for Tube Hydroforming, in AIP Conference Proceedings, Volume 712 (2001), 1148–1153.

    Article  Google Scholar 

  43. F. Dohmann, Ch. Hartl, Hydroforming-applications of coherent FE-simulations to the development of products and processes, Journal of Materials Processing Technology, Volume 150/1–2(2004), 18–24.

    Article  Google Scholar 

  44. M. Strano, S. Jirathearavat, S.G. Shr, T. Altan, Virtual process development in tube hydroforming, Journal of Materials Processing Technology, 146 (2004), 130–136.

    Article  Google Scholar 

  45. R. Di Lorenzo, L. Filice, D. Umbrello, and F. Micari, An integrated approach to the design of tube hydroforming processes: artificial intelligence, numerical analysis and experimental investigation, Proc. of Numiform 2004 Conference, AIP Conference Proceedings, 712 (2004), 1118–1123.

    Article  Google Scholar 

  46. R. Di Lorenzo, L Filice, D Umbrello, F Micari, Optimal design of tube hydroforming processes: a fuzzy-logic-based approach, Journal of Engineering Manufacture, 218-6 (2004), 599–606.

    Article  Google Scholar 

  47. K.S. Park, B.J. Kim, Y.H. Moon, Optimization of Tube Hydroforming Process by Using Fuzzy Expert System, Materials Science Forum. Vol. 475–479, Part 4, (2005), 3283–3286.

    Article  Google Scholar 

  48. J.C. Gelin, C. Labergere, S. Thibaud, N. Boudeau, Design of hydroforming processes for metallic liners used in high pressure hydrogen storage, AIP Conference Proceedings, 778, (2005), 538–542.

    Article  Google Scholar 

  49. J. W. Yoon, K. Chung, F. Pourboghrat, F. Barlat, Design optimization of extruded preform for hydroforming processes based on ideal forming design theory, International journal of mechanical sciences, 48, 1–2 (2006)., 1416–1428.

    Article  Google Scholar 

  50. S. Thibaud, N. Boudeau, J.C. Gelin, TRIP Steel: Plastic behaviour modelling and influence on functional behaviour, J. of Materials Processing Technology, 177 (2006), 433–438.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this paper

Cite this paper

Gelin, JC. (2007). Advances and Progresses in Sheet and Tube Hydroforming Processes. In: Advances in Material Forming. Springer, Paris. https://doi.org/10.1007/978-2-287-72143-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-72143-4_11

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-72142-7

  • Online ISBN: 978-2-287-72143-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics