Skip to main content

Angiogenesis in Adipose Tissue

  • Chapter
  • First Online:
Physiology and Physiopathology of Adipose Tissue
  • 2429 Accesses

Abstract

The first major role of adipose tissue (AT) is the storage and release of lipids depending on the energy balance. In addition to its key role in maintaining body energy homeostasis the AT is now recognized as an endocrine organ. Both metabolic and secretory functions require constant interactions between the blood compartment and adipocytes highlighting the importance of the AT vascular network. Ignored for a long time, the functionality and integrity of the AT vascular network appears to play an important role in the AT plasticity and functions. This chapter describes the literature data on the AT vascular network and its role in controlling the metabolic and secretory activities of AT in relation to blood flow. The potential mechanisms involved in the remodeling of AT vascular network are considered. The physiological and pathological consequences of AT vascular remodeling are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoki N, Yokoyama R, Asai N et al (2010) Adipocyte-derived microvesicles are associated with multiple angiogenic factors and induce angiogenesis in vivo and in vitro. Endocrinology 151:76–2567

    Article  Google Scholar 

  • Beigneux AP (2010) GPIHBP1 and the processing of triglyceride-rich lipoproteins. Clin Lipidol 5:575–582

    Article  PubMed  CAS  Google Scholar 

  • Bjorntorp P, Sjostrom L (1972) Fat cell size and number in adipose tissue in relation to metabolism. Isr J Med Sci 8:320–324

    PubMed  CAS  Google Scholar 

  • Bouloumie A, Drexler HC, Lafontan M, Busse R (1998) Leptin, the product of Ob gene, promotes angiogenesis. Circ Res 83:66–1059

    Article  Google Scholar 

  • Bourlier V, Zakaroff-Girard A, Miranville A et al (2008) Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 117:806–815

    Article  PubMed  CAS  Google Scholar 

  • Bulow J, Astrup A, Christensen NJ, Kastrup J (1987) Blood flow in skin, subcutaneous adipose tissue and skeletal muscle in the forearm of normal man during an oral glucose load. Acta Physiol Scand 130:657–661

    Article  PubMed  CAS  Google Scholar 

  • Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9:15–107

    Article  Google Scholar 

  • Cao R, Brakenhielm E, Wahlestedt C et al (2001) Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci U S A 98:6390–6395

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty S, Zawieja S, Wang W et al (2011) M Lymphatic system: a vital link between metabolic syndrome and inflammation. Ann N Y Acad Sci 1207(Suppl 1):E94–E102

    Google Scholar 

  • Cho CH, Koh YJ, Han J et al (2007) Angiogenic role of LYVE-1-positive macrophages in adipose tissue. Circ Res 100:47–57

    Article  Google Scholar 

  • Christiaens V, Lijnen HR (2010) Angiogenesis and development of adipose tissue. Mol Cell Endocrinol 318:2–9

    Article  PubMed  CAS  Google Scholar 

  • Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 211:4–32

    Google Scholar 

  • Duffaut C, Zakaroff-Girard A, Bourlier V et al (2009) Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol 29:1608–1614

    Article  PubMed  CAS  Google Scholar 

  • Funada J, Dennis AL, Roberts R et al (2011) Regulation of subcutaneous adipose tissue blood flow is related to measures of vascular and autonomic function. Clin Sci (Lond) 119:313–322

    Article  Google Scholar 

  • Gealekman O, Burkart A, Chouinard M et al (2008) Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab E1056:64–295

    Google Scholar 

  • Gealekman O, Guseva N, Hartigan C et al (2011) Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123:94–186

    Article  Google Scholar 

  • Goossens GH, Bizzarri A, Venteclef N et al (2011) Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124:67–76

    Article  PubMed  CAS  Google Scholar 

  • Hagberg CE, Falkevall A, Wang X et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lee JE, Jin J et al (2011) The spatiotemporal development of adipose tissue. Development 5027:37–138

    Google Scholar 

  • Hanzu FA, Palomo M, Kalko SG et al (2011) Translational evidence of endothelial damage in obese individuals: inflammatory and prothrombotic responses. J Thromb Haemost 9:1236–1245

    Article  PubMed  CAS  Google Scholar 

  • Harvey NL, Srinivasan RS, Dillard ME et al (2005) Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet 37:1072–1081

    Article  PubMed  CAS  Google Scholar 

  • Herse F, Fain JN, Janke J, Engeli S, Kuhn C, Frey N, Weich HA, Bergmann A, Kappert K, Karumanchi SA, Luft FC, Muller DN, Staff AC, Dechend R (2011) Adipose tissue-derived soluble fms-like tyrosine kinase 1 is an obesity-relevant endogenous paracrine adipokine. Hypertension 58:37–42

    Article  PubMed  CAS  Google Scholar 

  • Hocking SL, Wu LE, Guilhaus M et al (2011) Intrinsic depot-specific differences in the secretome of adipose tissue, preadipocytes, and adipose tissue-derived microvascular endothelial cells. Diabetes 59:3008–3016

    Article  Google Scholar 

  • Hutley LJ, Herington AC, Shurety W et al (2001) Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab E1037:44–281

    Google Scholar 

  • Karpe F, Fielding BA, Ilic V et al (2002) Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. Diabetes 2467:51–73

    Google Scholar 

  • Klimcakova E, Roussel B, Marquez-Quinones A et al (2010) Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J Clin Endocrinol Metab 96:E73–E82

    Article  PubMed  Google Scholar 

  • Koh YJ, Koh BI, Kim H et al (2011) Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells. Arterioscler Thromb Vasc Biol 1141:31–50

    Google Scholar 

  • Kuo LE, Kitlinska JB, Tilan JU et al (2007) Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 803:11–13

    Google Scholar 

  • Ledoux S, Queguiner I, Msika S et al (2008) Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity. Diabetes 3247:57

    Google Scholar 

  • Liu J, Divoux A, Sun J et al (2009) Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15:5–940

    Google Scholar 

  • Lolmede K, de Saint Durand, Front V, Galitzky J et al (2003) Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int J Obes Relat Metab Disord 27:95–1187

    Article  Google Scholar 

  • Maumus M, Sengenes C, Decaunes P et al (2008) Evidence of in situ proliferation of adult adipose tissue-derived progenitor cells: influence of fat mass microenvironment and growth. J Clin Endocrinol Metab 4098:93–106

    Google Scholar 

  • Maumus M, Peyrafitte JA, D’Angelo R et al (2011) Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond) 35(9):1141–1153

    Article  CAS  Google Scholar 

  • Miller NE, Michel CC, Nanjee MN et al (2011) Secretion of adipokines by human adipose tissue in vivo: partitioning between capillary and lymphatic transport. Am J Physiol Endocrinol Metab 301:E659–E667

    Article  PubMed  CAS  Google Scholar 

  • Miranville A, Heeschen C, Sengenes C et al (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110:349–355

    Article  PubMed  CAS  Google Scholar 

  • Neels JG, Thinnes T, Loskutoff DJ (2004) Angiogenesis in an in vivo model of adipose tissue development. FASEB J 983:5–18

    Google Scholar 

  • Nunes SS, Greer KA, Stiening CM et al (2010) Implanted microvessels progress through distinct neovascularization phenotypes. Microvasc Res 79:10–20

    Article  PubMed  CAS  Google Scholar 

  • Pasarica M, Sereda OR, Redman LM et al (2009) Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58:718–725

    Article  PubMed  CAS  Google Scholar 

  • Planat-Benard V, Silvestre JS, Cousin B et al (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 656:63–109

    Google Scholar 

  • Pond CM (2005) Adipose tissue and the immune system. Prostaglandins Leukot Essent Fat Acids 73:17–30

    Article  CAS  Google Scholar 

  • Rajashekhar G, Traktuev DO, Roell WC et al (2008) IFATS collection: adipose stromal cell differentiation is reduced by endothelial cell contact and paracrine communication: role of canonical Wnt signaling. Stem Cells 2674:26–81

    Google Scholar 

  • Ryan TJ (1995) Lymphatics and adipose tissue. Clin Dermatol 13:493–498

    Article  PubMed  CAS  Google Scholar 

  • Sandqvist M, Strindberg L, Schmelz M et al (2011) Impaired delivery of insulin to adipose tissue and skeletal muscle in obese women with postprandial hyperglycemia. J Clin Endocrinol Metab 96:E1320–E1324

    Article  PubMed  CAS  Google Scholar 

  • Sengenes C, Miranville A, Maumus M et al (2007a) Chemotaxis and differentiation of human adipose tissue CD34 +/CD31− progenitor cells: role of stromal derived factor-1 released by adipose tissue capillary endothelial cells. Stem Cells 2269:25–76

    Google Scholar 

  • Sengenes C, Miranville A, Lolmede K et al (2007b) The role of endothelial cells in inflamed adipose tissue. J Intern Med 262:415–421

    Article  PubMed  CAS  Google Scholar 

  • Spalding KL, Arner E, Westermark PO et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787

    Article  PubMed  CAS  Google Scholar 

  • Tobin L, Simonsen L, Bulow J (2010) Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment. Clin Physiol Funct Imaging 30:447–452

    Article  PubMed  CAS  Google Scholar 

  • Tobin L, Simonsen L, Bulow J (2011) The dynamics of the microcirculation in the subcutaneous adipose tissue is impaired in the postprandial state in type 2 diabetes. Clin Physiol Funct Imaging 31:458–463

    Article  PubMed  CAS  Google Scholar 

  • Traktuev DO, Merfeld-Clauss S, Li J et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85

    Article  PubMed  CAS  Google Scholar 

  • Villaret A, Galitzky J, Decaunes P et al (2010) Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes 2755:59–63

    Google Scholar 

  • Wood IS, de Heredia FP, Wang B, Trayhurn P (2009) Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc 68:370–377

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Cao R, Nilsson D et al (2008) FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc Natl Acad Sci U S A 105:72–10167

    Article  Google Scholar 

  • Xue Y, Petrovic N, Cao R et al (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9:99–109

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Galitzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Bouloumié, A., Galitzky, J. (2013). Angiogenesis in Adipose Tissue. In: Bastard, JP., Fève, B. (eds) Physiology and Physiopathology of Adipose Tissue. Springer, Paris. https://doi.org/10.1007/978-2-8178-0343-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0343-2_3

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0342-5

  • Online ISBN: 978-2-8178-0343-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics