Skip to main content

Elements of Functional Neuroanatomy: The Major Neurotransmitter Systems

  • Chapter
  • First Online:
Stereotaxic Neurosurgery in Laboratory Rodent

Abstract

With essential elements of functional neuroanatomy, this chapter completes the anatomical basis developed in Chap. 2, with a systematic description of the major neurotransmitter systems, including ways to experimentally influence them. The amino acids, such as glutamate and gamma-aminobutyric acid (GABA), and the monoamines such as noradrenaline and dopamine, serotonin, and acetylcholine are successively described from their localization in the brain to their implications in CNS disorders. For each neurotransmitter, the chemical structure and mechanism of biosynthesis and degradation are detailed and illustrated along with their central action through chemical interactions with their specific receptors and the anatomical distribution of their target areas. Rather than exhaustively reviewing all the neurotransmitter systems of the brain, this presentation of selected neurotransmitters aims to provide a comprehensive overview of the complexity of chemical neurotransmission in the brain and to help investigators in their search of an optimal way to experimentally manipulate a given system and in the prediction of the potential effects of such manipulations. The elements provided in this chapter may additionally guide users in setting up their experimental approach (e.g., systemic versus local pharmacology), in choosing the adequate molecules that will ensure correct anesthesia and analgesia of the subject when required without interfering (or interfering the least) with the system studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152

    CAS  PubMed  Google Scholar 

  • Berger P, Farrel K, Sharp F, Skolnick P (1994) Drugs acting at the strychnine-insensitive glycine receptor do not induce HSP-70 protein in the cingulate cortex. Neurosci Lett 168(1–2):147–150

    CAS  PubMed  Google Scholar 

  • Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    CAS  PubMed  Google Scholar 

  • Berridge CW, Stratford TL, Foote SL, Kelley AE (1997) Distribution of dopamine-beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse 27:230–241

    CAS  PubMed  Google Scholar 

  • Binns KE, Turner JP, Salt TE (2003) Kainate receptor (GluR5) – mediated disinhibition of responses in rat ventrobasal thalamus allows a novel sensory processing mechanism. J Physiol 551(Pt 2):525–537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bjorklund A, Hokfelt T, Kuhar MJ (2005) The handbook of chemical neuroanatomy. Elsevier, Amsterdam

    Google Scholar 

  • Bockaert J, Claeysen S, Compan V, Dumuis A (2011) 5-HT(4) receptors, a place in the sun: act two. Curr Opin Pharmacol 11(1):87–93

    CAS  PubMed  Google Scholar 

  • Bolea S, Avignone E, Berretta N, Sanchez-Andres JV, Cherubini E (1999) Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. J Neurophysiol 81(5):2095–2102

    CAS  PubMed  Google Scholar 

  • Bon C, Galvan M (1996) Electrophysiological actions of GABAB agonists and antagonists in rat dorso-lateral septal neurones in vitro. Br J Pharmacol 118(4):961–967

    PubMed Central  CAS  PubMed  Google Scholar 

  • Borne RF (1994) Serotonin: the neurotransmitter for the’90s. Drug Topics 10:108–120

    Google Scholar 

  • Chebib M, Hinton T, Schmid KL et al (2009) Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory. J Pharmacol Exp Ther 328(2):448–457

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen ZJ, Minneman KP (2005) Recent progress in alpha1-adrenergic receptor research. Acta Pharmacol Sin 26(11):1281–1287

    CAS  PubMed  Google Scholar 

  • Chu HY, Yang Z, Zhao B, Jin GZ, Hu GY, Zhen X (2010) Activation of phosphatidyl-inositol-linked D1-like receptors increases spontaneous glutamate release in rat somatosensory cortical neurons in vitro. Brain Res 1343:20–27

    CAS  PubMed  Google Scholar 

  • Cooper JR, Bloom FL, Roth RH (2003) The biochemical basis of neuropharmacology, 8th edn. Oxford Academy Press, Oxford

    Google Scholar 

  • Costall B, Naylor RJ (1991) Pharmacological properties and functions of central 5-HT3 receptors. Therapie 46(6):437–444

    CAS  PubMed  Google Scholar 

  • Cowen PJ (1991) Serotonin receptor subtypes: implications for psychopharmacology. Br J Psychiat 12:7–14

    Google Scholar 

  • Crunelle CL, Miller ML, Booij J, van den Brink W (2010) The nicotinic acetylcholine receptor partial agonist varenicline and the treatment of drug dependence: a review. Eur Neuropsychopharmacol 20(2):69–79

    CAS  PubMed  Google Scholar 

  • Cuche H (1981) Séminaire de psychiatrie biologique, Hôpital Sainte-Anne, tome 1. Edition Medicales Fournier Freres, Gennevilliers, pp 107–125

    Google Scholar 

  • D’Aoust JP, Tiberi M (2010) Role of the extracellular amino terminus and first membrane spanning helix of dopamine D1 and D5 receptors in shaping ligand selectivity and efficacy. Cell Signal 22(1):106–116

    PubMed  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20:398–399

    CAS  PubMed  Google Scholar 

  • Danysz W, Parsons CG (1998) Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50(4):597–664

    CAS  PubMed  Google Scholar 

  • Dawson LA (2011) The central role of 5-HT6 receptors in modulating brain neurochemistry. Int Rev Neurobiol 96:1–26

    CAS  PubMed  Google Scholar 

  • De Biasi M, Dani JA (2011) Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci 34:105–130

    PubMed Central  PubMed  Google Scholar 

  • El-Ghundi M, O’Dowd BF, George SR (2007) Insights into the role of dopamine receptor systems in learning and memory. Rev Neurosci 18(1):37–66

    CAS  PubMed  Google Scholar 

  • Epelbaum J (1995) Neuropeptides et neuromédiateurs, 2eth edn. Editions Inserm/Sandoz, Paris

    Google Scholar 

  • Erlander MG, Lovenberg TW, Baron BM et al (1993) Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain. Proc Natl Acad Sci U S A 90(8):3452–3456

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forbes IT, Dabbs S, Duckworth DM et al (1998) (R)-3,N-dimethyl158 N-[1-methyl-3-(4-methyl-piperidinyl-1-yl) propyl]benzensulfonamide: the first selective 5-HT7 antagonist. J Med Chem 41:655–657

    CAS  PubMed  Google Scholar 

  • Fukunaga K, Shioda N (2012) Novel dopamine D2 receptor signaling through proteins interacting with the third cytoplasmic loop. Mol Neurobiol 45(1):144–152

    CAS  PubMed  Google Scholar 

  • Funahashi M, Stewart M (1998) Properties of gamma-frequency oscillations initiated by propagating population bursts in retrohippocampal regions of rat brain slices. J Physiol 510(Pt 1):191–208

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gether U, Asmar F, Meinild AK, Rasmussen SG (2002) Structural basis for activation of G-protein-coupled receptors. Pharmacol Toxicol 91(6):304–312

    CAS  PubMed  Google Scholar 

  • Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396

    CAS  PubMed  Google Scholar 

  • Gotti C, Clementi F, Fornari A et al (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78(7):703–711

    CAS  PubMed  Google Scholar 

  • Hague C, Chen Z, Uberti M, Minneman KP (2003) Alpha(1)-adrenergic receptor subtypes: non-identical triplets with different dancing partners ? Life Sci 74(4):411–418

    CAS  PubMed  Google Scholar 

  • Haydar SN, Dunlop J (2010) Neuronal nicotinic acetylcholine receptors – targets for the development of drugs to treat cognitive impairment associated with schizophrenia and Alzheimer’s disease. Curr Top Med Chem 10(2):144–152

    CAS  PubMed  Google Scholar 

  • Hirano K, Piers TM, Searle KL, Miller ND, Rutter AR, Chapman PF (2009) Procognitive 5-HT6 antagonists in the rat forced swimming test: potential therapeutic utility in mood disorders associated with Alzheimer’s disease. Life Sci 84(15–16):558–562

    CAS  PubMed  Google Scholar 

  • Hostetler CM, Harkey SL, Krzywosinski TB, Aragona BJ, Bales KL (2011) Neonatal exposure to the D1 agonist SKF38393 inhibits pair bonding in the adult prairie vole. Behav Pharmacol 22(7):703–710

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR et al (1994) International union of pharmacology: classification of receptors for 5 hydroxytryptamine (serotonin). Pharmacol Rev 46:157–205

    CAS  PubMed  Google Scholar 

  • Huang Y, Qiu AW, Peng YP, Liu Y, Huang HW, Qiu YH (2010) Roles of dopamine receptor subtypes in mediating modulation of T lymphocyte function. Neuro Endocrinol Lett 31(6):782–791

    CAS  PubMed  Google Scholar 

  • Ishikawa M, Hashimoto K (2011) Alpha7 nicotinic acetylcholine receptor as a potential therapeutic target for schizophrenia. Curr Pharmacol Des 17(2):121–129

    CAS  Google Scholar 

  • Joyce JN, Meador-Woodruff JH (1997) Linking the family of D2 receptors to neuronal circuits in human brain: insights into schizophrenia. Neuropsychopharmacology 16(6):375–384

    CAS  PubMed  Google Scholar 

  • Kabashima N, Shibuya I, Ibrahim N, Ueta Y, Yamashita H (1997) Inhibition of spontaneous EPSCs and IPSCs by presynaptic GABAB receptors on rat supraoptic magnocellular neurons. J Physiol 504(Pt 1):113–126

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kawamata J, Shimohama SS (2011) Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 24(Suppl 2):95–109

    CAS  PubMed  Google Scholar 

  • Kem WR (2000) The brain alpha7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: studies with DMXBA (GTS-21). Behav Brain Res 113(1–2):169–181

    CAS  PubMed  Google Scholar 

  • King MV, Marsden CA, Fone KC (2008) A role for the 5-HT(1A), 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol Sci 29(9):482–492

    CAS  PubMed  Google Scholar 

  • Kogan HA, Marsden CA, Fone KC (2002) DR4004, a putative 5-HT(7) receptor antagonist, also has functional activity at the dopamine D2 receptor. Eur J Pharmacol 449(1–2):105–111

    CAS  PubMed  Google Scholar 

  • Kvernmo T, Houben J, Sylte I (2008) Receptor-binding and pharmacokinetic properties of dopaminergic agonists. Curr Top Med Chem 8(12):1049–1067

    CAS  PubMed  Google Scholar 

  • Labrakakis C, Tong CK, Weissman T, Torsney C, MacDermott AB (2003) Localization and function of ATP and GABAA receptors expressed by nociceptors and other postnatal sensory neurons in rat. J Physiol 549(Pt 1):131–142

    PubMed Central  CAS  PubMed  Google Scholar 

  • Langmead CJ, Watson J, Reavill C (2008) Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 117(2):232–243

    CAS  PubMed  Google Scholar 

  • Lovell PJ, Bromidge SM, Dabbs S et al (2000) A novel, potent, and selective 5-HT7 antagonist: (R)-3-(2-(2-(4-methylpiperin-1-yl)-ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J Med Chem 43:342–345

    CAS  PubMed  Google Scholar 

  • Lucas G, Rymar VV, Du J et al (2007) Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 55(5):712–725

    CAS  PubMed  Google Scholar 

  • MacDonald E, Scheinin M (1995) Distribution and pharmacology of alpha 2-adrenoceptors in the central nervous system. J Physiol Pharmacol 46(3):241–258

    CAS  PubMed  Google Scholar 

  • Mahe C, Loetscher E, Feuerbach D, Muller W, Seiler MP, Schoeffter P (2004) Differential inverse agonist efficacies of SB-258719, SB-258741 and SB-269970 at human recombinant serotonin 5-HT7 receptors. Eur J Pharmacol 495(2–3):97–102

    CAS  PubMed  Google Scholar 

  • Marien MR, Colpaert FC, Rosenquist AC (2004) Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Rev 45:38–78

    CAS  PubMed  Google Scholar 

  • Martelle JL, Nader MA (2008) A review of the discovery, pharmacological characterization, and behavioral effects of the dopamine D2-like receptor antagonist eticlopride. CNS Neurosci Ther 14(3):248–262

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martin P, Lemonier F (1994) Interet des recepteurs serotoninergiques de type 2: 5HT 2a et 5HT 2c, dans les troubles depressifs: action de la medifoxamine. L’encéphale 20:427–435

    CAS  PubMed  Google Scholar 

  • Meitzen J, Luoma JI, Stern CM, Mermelstein PG (2011) Alpha1-adrenergic receptors activate two distinct signaling pathways in striatal neurons. J Neurochem 116(6):984–995

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meneses A (1999) 5-HT system and cognition. Neurosci Biobehav Rev 23(8):1111–1125

    CAS  PubMed  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121(6):1013–1052

    PubMed  Google Scholar 

  • Meunier JM, Shvaloff A (1995) Neurotransmetteurs: bases neurobiologiques et pharmacologiques. Editions Masson, Paris

    Google Scholar 

  • Millar NS, Gotti C (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56(1):237–246

    CAS  PubMed  Google Scholar 

  • Mirza NR, Larsen JS, Mathiasen C et al (2008) NS11394 [3’-[5-(1-hydroxy-1-methyl-ethyl)-benzoimidazol-1-yl]-biphenyl-2-carbonitrile], a unique subtype-selective GABAA receptor positive allosteric modulator: in vitro actions, pharmacokinetic properties and in vivo anxiolytic efficacy. J Pharmacol Exp Ther 327(3):954–968

    CAS  PubMed  Google Scholar 

  • Mlinar B, Mascalchi S, Mannaioni G, Morini R, Corradetti R (2006) 5-HT4 receptor activation induces long-lasting EPSP-spike potentiation in CA1 pyramidal neurons. Eur J Neurosci 24(3):719–731

    PubMed  Google Scholar 

  • Mohler EG, Shacham S, Noiman S et al (2007) VRX-03011, a novel 5-HT4 agonist, enhances memory and hippocampal acetylcholine efflux. Neuropharmacology 53(4):563–573

    CAS  PubMed  Google Scholar 

  • Momiyama T (2010) Developmental increase in D1-like dopamine receptor-mediated inhibition of glutamatergic transmission through P/Q-type channel regulation in the basal forebrain of rats. Eur J Neurosci 32(4):579–590

    PubMed  Google Scholar 

  • Nasser Y, Ho W, Sharkey KA (2006) Distribution of adrenergic receptors in the enteric nervous system of the guinea pig, mouse, and rat. J Comp Neurol 495(5):529–553

    CAS  PubMed  Google Scholar 

  • Nelson DL (2004) 5-HT5 receptors. Current drug targets. CNS Neurol Disord 3(1):53–58

    CAS  Google Scholar 

  • O’Keefe GC, Barker RA, Caldwell MA (2009) Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle 8(18):2888–2894

    Google Scholar 

  • Palma E, Conti L, Roseti C, Limatola C (2012) Novel approaches to study the involvement of a7-nAChR in human diseases. Curr Drug Targets 13:579–586

    CAS  PubMed  Google Scholar 

  • Parga J, Rodriguez-Pallares J, Munoz A, Guerra MJ, Labandeira-Garcia JL (2007) Serotonin decreases generation of dopaminergic neurons from mesencephalic precursors via serotonin type 7 and type 4 receptors. Dev Neurobiol 67(1):10–22

    CAS  PubMed  Google Scholar 

  • Parri HR, Hernandez CM, Dineley KT (2011) Research update: alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol 82(8):931–942

    CAS  PubMed  Google Scholar 

  • Parsons CG (2001) NMDA receptors as targets for drug action in neuropathic pain. Eur J Pharmacol 429(1–3):71–78

    CAS  PubMed  Google Scholar 

  • Patenaude C, Chapman CA, Bertrand S, Congar P, Lacaille JC (2003) GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission. J Physiol 553(Pt 1):155–167

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quik M, Huang LZ, Parameswaran N, Bordia T, Campos C, Perez XA (2009) Multiple roles for nicotine in Parkinson’s disease. Biochem Pharmacol 78(7):677–685

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramos BP, Arnsten AF (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113(3):523–536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reever CM, Ferrari-DiLeo G, Flynn DD (1997) The M5 (m5) receptor subtype: fact or fiction ? Life Sci 60(13–14):1105–1112

    CAS  PubMed  Google Scholar 

  • Reis GM, Duarte ID (2006) Baclofen, an agonist at peripheral GABAB receptors, induces antinociception via activation of TEA-sensitive potassium channels. Br J Pharmacol 149(6):733–739

    PubMed Central  CAS  PubMed  Google Scholar 

  • Restivo L, Roman F, Dumuis A, Bockaert J, Marchetti E, Ammassari-Teule M (2008) The promnesic effect of G-protein-coupled 5-HT4 receptors activation is mediated by a potentiation of learning induced spine growth in the mouse hippocampus. Neuropsychopharmacology 33(10):2427–2434

    CAS  PubMed  Google Scholar 

  • Riccioni T (2011) 5-HT6 receptor characterization. Int Rev Neurobiol 94:67–88

    Google Scholar 

  • Saunders C, Limbird LE (1999) Localization and trafficking of alpha2-adrenergic receptor subtypes in cells and tissues. Pharmacol Ther 84(2):193–205

    CAS  PubMed  Google Scholar 

  • Schaffhauser H, Mathiasen JR, Dicamillo A et al (2009) Dimebolin is a 5-HT6 antagonist with acute cognition enhancing activities. Biochem Pharmacol 78(8):1035–1042

    CAS  PubMed  Google Scholar 

  • Schechter LE, Lin Q, Smith DL et al (2008) Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology 33(6):1323–1335

    CAS  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563

    CAS  PubMed  Google Scholar 

  • Schmitt KC, Reith ME (2010) Regulation of the dopamine transporter: aspects relevant to psychostimulant drugs of abuse. Ann NY Acad Sci 1187:316–340

    CAS  PubMed  Google Scholar 

  • Shen KZ, Johnson SW (1997) Presynaptic GABAB and adenosine A1 receptors regulate synaptic transmission to rat substantia nigra reticulata neurones. J Physiol 505(1):153–163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slassi A, Methvin I, Xin T (2004) Recent progress in 5-HT7 receptors: potential treatment of central and peripheral nervous system diseases. Expert Opin Ther Pat 14:1009–1027

    CAS  Google Scholar 

  • Sotoyama H, Zheng Y, Iwakura Y et al (2011) Pallidal hyperdopaminergic innervation underlying D2 receptor-dependent behavioral deficits in the schizophrenia animal model established by EGF. PLoS One 6(10):e25831

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69(4):628–649

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun W (2011) Dopamine neurons in the ventral tegmental area: drug-induced synaptic plasticity and its role in relapse to drug-seeking behavior. Curr Drug Abuse Rev 4(4):270–285

    CAS  PubMed  Google Scholar 

  • Sun L, Chiu D, Kowal D et al (2004) Characterization of two novel N-methyl-d-aspartate antagonists: EAA-090 (2-[8,9-dioxo-2,6-diazabicyclo [5.2.0]non-1(7)-en2-yl]ethylphosphonic acid) and EAB-318 (R-alpha-amino-5-chloro-1-(phosphonomethyl)-1H-benzimidazole-2-propanoic acid hydrochloride). J Pharmacol Exp Ther 310(2):563–750

    CAS  PubMed  Google Scholar 

  • Thomas DR (2006) 5-ht5A receptors as a therapeutic target. Pharmacol Ther 111(3):707–714

    CAS  PubMed  Google Scholar 

  • Thomas DR, Hagan JJ (2004) 5-HT7 receptors. Current drug targets. CNS Neurol Disord 3:81–90

    CAS  Google Scholar 

  • Thomas DR, Melotto S, Massagrande M et al (2003) SB-656104-A, a novel selective 5-HT7 receptor antagonist, modulates REM sleep in rats. Br J Pharmacol 139:705–714

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomsen WJ, Grottick AJ, Menzaghi F et al (2008) Lorcaserin, a novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. J Pharmacol Exp Ther 325(2):577–587

    CAS  PubMed  Google Scholar 

  • Tuesta LM, Fowler CD, Kenny PJ (2011) Recent advances in understanding nicotinic receptor signaling mechanisms that regulate drug self-administration behavior. Biochem Pharmacol 82(8):984–995

    PubMed Central  CAS  PubMed  Google Scholar 

  • Van Veldhuizen MJA, Feenstra MGP, Heinsbroek RPW, Boer GJ (1993) In vivo microdialysis of noradrenaline overflow: effects of alpha-adrenoceptor agonists and antagonists measured by cumulative concentration response curves. Br J Pharmacol 109:655–660

    PubMed Central  PubMed  Google Scholar 

  • Wallace TL, Porter RH (2011) Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharmacol 82(8):891–903

    CAS  PubMed  Google Scholar 

  • Weiss B, Alt A, Ogden AM et al (2006) Pharmacological characterization of the competitive GLUK5 receptor antagonist decahydroisoquinoline LY466195 in vitro and in vivo. J Pharmacol Exp Ther 318(2):772–781

    CAS  PubMed  Google Scholar 

  • Wilson JM, Sanyal S, Van Tol HH (1998) Dopamine D2 and D4 receptor ligands: relation to antipsychotic action. Eur J Pharmacol 351(3):273–286

    CAS  PubMed  Google Scholar 

  • Xie A, Song X, Ripps H, Qian H (2008) Cyclothiazide: a subunit-specific inhibitor of GABAC receptors. J Physiol 586(Pt 11):2743–2752

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang L, Omori K, Omori K, Otani H, Suzukawa J, Inagaki C (2003) GABAC receptor agonist suppressed ammonia-induced apoptosis in cultured rat hippocampal neurons by restoring phosphorylated BAD level. J Neurochem 87(3):791–800

    CAS  PubMed  Google Scholar 

  • Yang JC, Fan XL, Song XA, Li Q (2008) The role of different glutamate receptors in the mediation of glutamate-evoked excitation of red nucleus neurons after simulated microgravity in rat. Neurosci Lett 448(3):255–259

    CAS  PubMed  Google Scholar 

  • Zigmond MJ, Stricker EM (1984) Parkinson’s disease: studies with an animal model. Life Sci 35(1):5–18

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Ferry, B., Gervasoni, D., Vogt, C. (2014). Elements of Functional Neuroanatomy: The Major Neurotransmitter Systems. In: Stereotaxic Neurosurgery in Laboratory Rodent. Springer, Paris. https://doi.org/10.1007/978-2-8178-0472-9_3

Download citation

Publish with us

Policies and ethics