Skip to main content

Abstract

The last decade has witnessed a rapid advancement in our understanding of the complexity of the mechanistic target of rapamycin (mTOR) pathway. Growing evidence linking hyperactivated mTOR signaling to cancer has piqued an interest in targeting this pathway in the development of anticancer therapies. mTOR inhibitors have shown clear benefit in rare cancers and tumors, such as tuberous sclerosis complex (TSC)-associated tumors, renal cell carcinoma (RCC), and neuroendocrine tumors.

This chapter will focus on the role of mTOR signaling in the development of TSC and its various clinical manifestations and present mTOR inhibition as a new therapeutic approach (supported by preclinical and clinical studies) that has changed the landscape of available treatment options for TSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355(13):1345–56.

    Article  CAS  PubMed  Google Scholar 

  3. Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet. 2008;372(9639):657–68.

    Article  CAS  PubMed  Google Scholar 

  4. Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Voss MH, Molina AM, Motzer RJ. mTOR inhibitors in advanced renal cell carcinoma. Hematol Oncol Clin North Am. 2011;25(4):835–52.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bissler JJ HE. Renal manifestations of tuberous sclerosis complex. In: Kwiatkowski DJ, Whittemore VH, Thiele EA, editors. Tuberous sclerosis complex: genes, clinical features and therapeutics. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2010. doi:10.1002/9783527630073.ch15. Accessed 11 July 2013.

    Google Scholar 

  7. Franz DN. Everolimus: an mTOR inhibitor for the treatment of tuberous sclerosis. Expert Rev Anticancer Ther. 2011;11(8):1181–92.

    Article  CAS  PubMed  Google Scholar 

  8. Roach ES, Gomez MR, Northrup H. Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol. 1998;13(12):624–8.

    Article  CAS  PubMed  Google Scholar 

  9. van Slegtenhorst M, de Hoogt R, Hermans C, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805–8.

    Article  PubMed  Google Scholar 

  10. European Chromosome 16 Tuberous Sclerosis C. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 1993;75(7):1305–15.

    Article  Google Scholar 

  11. Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1 and −2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A. 2002;99(21):13571–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gao X, Zhang Y, Arrazola P, et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol. 2002;4(9):699–704.

    Article  CAS  PubMed  Google Scholar 

  13. Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–57.

    Article  CAS  PubMed  Google Scholar 

  14. Franz DN, Bissler JJ, McCormack FX. Tuberous sclerosis complex: neurological, renal and pulmonary manifestations. Neuropediatrics. 2010;41(5):199–208.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yates JR. Tuberous sclerosis. Eur J Hum Genet. 2006;14(10):1065–73.

    Article  CAS  PubMed  Google Scholar 

  16. Budde K, Gaedeke J. Tuberous sclerosis complex-associated angiomyolipomas: focus on mTOR inhibition. Am J Kidney Dis. 2012;59(2):276–83.

    Article  CAS  PubMed  Google Scholar 

  17. Sancak O, Nellist M, Goedbloed M, et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype-phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet. 2005;13(6):731–41.

    Article  CAS  PubMed  Google Scholar 

  18. Feliciano DM, Lin TV, Hartman NW, et al. A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits. Int J Dev Neurosci. 2013. doi:10.1016/j.ijdevneu.2013.02.008.

    PubMed Central  PubMed  Google Scholar 

  19. Rok P, Kasprzyk-Obara J, Domanska-Pakiela D, Jozwiak S. Clinical symptoms of tuberous sclerosis complex in patients with an identical TSC2 mutation. Med Sci Monit. 2005;11(5):CR230–4.

    CAS  PubMed  Google Scholar 

  20. Brugarolas JB, Vazquez F, Reddy A, et al. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell. 2003;4(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  21. El-Hashemite N, Walker V, Zhang H, Kwiatkowski DJ. Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res. 2003;63(17):5173–7.

    CAS  PubMed  Google Scholar 

  22. Goh S, Butler W, Thiele EA. Subependymal giant cell tumors in tuberous sclerosis complex. Neurology. 2004;63(8):1457–61.

    Article  PubMed  Google Scholar 

  23. Baybis M, Yu J, Lee A, et al. mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann Neurol. 2004;56(4):478–87.

    Article  CAS  PubMed  Google Scholar 

  24. Miyata H, Chiang AC, Vinters HV. Insulin signaling pathways in cortical dysplasia and TSC-tubers: tissue microarray analysis. Ann Neurol. 2004;56(4):510–9.

    Article  CAS  PubMed  Google Scholar 

  25. Chan JA, Zhang H, Roberts PS, et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol. 2004;63(12):1236–42.

    CAS  PubMed  Google Scholar 

  26. Feliciano DM, Quon JL, Su T, et al. Postnatal neurogenesis generates heterotopias, olfactory micronodules and cortical infiltration following single-cell Tsc1 deletion. Hum Mol Genet. 2012;21(4):799–810.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kopp CM, Muzykewicz DA, Staley BA, et al. Behavior problems in children with tuberous sclerosis complex and parental stress. Epilepsy Behav. 2008;13(3):505–10.

    Article  PubMed  Google Scholar 

  28. de Vries PJ, Gardiner J, Bolton PF. Neuropsychological attention deficits in tuberous sclerosis complex (TSC). Am J Med Genet A. 2009;149A(3):387–95.

    Article  PubMed  Google Scholar 

  29. Napolioni V, Moavero R, Curatolo P. Recent advances in neurobiology of tuberous sclerosis complex. Brain Dev. 2009;31(2):104–13.

    Article  PubMed  Google Scholar 

  30. Rakowski SK, Winterkorn EB, Paul E, et al. Renal manifestations of tuberous sclerosis complex: incidence, prognosis, and predictive factors. Kidney Int. 2006;70(10):1777–82.

    Article  CAS  PubMed  Google Scholar 

  31. Roach ES, Sparagana SP. Diagnosis of tuberous sclerosis complex. J Child Neurol. 2004;19(9):643–9.

    PubMed  Google Scholar 

  32. Diagnosis, screening, and clinical care of individuals with tuberous sclerosis complex. Tuberous Sclerosis Alliance website. http://www.tsalliance.org/documents/Diff-Diagnosis-2011.pdf. Accessed 11 July 2013.

  33. El-Hashemite N, Zhang H, Henske EP, Kwiatkowski DJ. Mutation in TSC2 and activation of mammalian target of rapamycin signalling pathway in renal angiomyolipoma. Lancet. 2003;361(9366):1348–9.

    Article  CAS  PubMed  Google Scholar 

  34. Karbowniczek M, Yu J, Henske EP. Renal angiomyolipomas from patients with sporadic lymphangiomyomatosis contain both neoplastic and non-neoplastic vascular structures. Am J Pathol. 2003;162(2):491–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Bonnet CS, Aldred M, von Ruhland C, et al. Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum Mol Genet. 2009;18(12):2166–76.

    Article  CAS  PubMed  Google Scholar 

  36. Krymskaya VP. Smooth muscle-like cells in pulmonary lymphangioleiomyomatosis. Proc Am Thorac Soc. 2008;5(1):119–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. McCormack FX, Inoue Y, Moss J, et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med. 2011;364(17):1595–606.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Carsillo T, Astrinidis A, Henske EP. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci U S A. 2000;97(11):6085–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kotulska K, Larysz-Brysz M, Grajkowska W, et al. Cardiac rhabdomyomas in tuberous sclerosis complex show apoptosis regulation and mTOR pathway abnormalities. Pediatr Dev Pathol. 2009;12(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  40. Meikle L, McMullen JR, Sherwood MC, et al. A mouse model of cardiac rhabdomyoma generated by loss of Tsc1 in ventricular myocytes. Hum Mol Genet. 2005;14(3):429–35.

    Article  CAS  PubMed  Google Scholar 

  41. Hofbauer GF, Marcollo-Pini A, Corsenca A, et al. The mTOR inhibitor rapamycin significantly improves facial angiofibroma lesions in a patient with tuberous sclerosis. Br J Dermatol. 2008;159(2):473–5.

    Article  CAS  PubMed  Google Scholar 

  42. Kaufman McNamara E, Curtis AR, Fleischer Jr AB. Successful treatment of angiofibromata of tuberous sclerosis complex with rapamycin. J Dermatolog Treat. 2012;23(1):46–8.

    Article  CAS  PubMed  Google Scholar 

  43. Schuler W, Sedrani R, Cottens S, et al. SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation. 1997;64(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  44. Sedrani R, Cottens S, Kallen J, Schuler W. Chemical modification of rapamycin: the discovery of SDZ RAD. Transplant Proc. 1998;30(5):2192–4.

    Article  CAS  PubMed  Google Scholar 

  45. Brattstrom C, Sawe J, Jansson B, et al. Pharmacokinetics and safety of single oral doses of sirolimus (rapamycin) in healthy male volunteers. Ther Drug Monit. 2000;22(5):537–44.

    Article  CAS  PubMed  Google Scholar 

  46. Serkova N, Jacobsen W, Niemann CU, et al. Sirolimus, but not the structurally related RAD (everolimus), enhances the negative effects of cyclosporine on mitochondrial metabolism in the rat brain. Br J Pharmacol. 2001;133(6):875–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kahan BD, Chang JY, Sehgal SN. Preclinical evaluation of a new potent immunosuppressive agent, rapamycin. Transplantation. 1991;52(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  48. Buech G, Bertelmann E, Pleyer U, et al. Formulation of sirolimus eye drops and corneal permeation studies. J Ocul Pharmacol Ther. 2007;23(3):292–303.

    Article  CAS  PubMed  Google Scholar 

  49. Crowe A, Bruelisauer A, Duerr L, et al. Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. Drug Metab Dispos. 1999;27(5):627–32.

    CAS  PubMed  Google Scholar 

  50. Kobayashi T, Minowa O, Kuno J, et al. Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res. 1999;59(6):1206–11.

    CAS  PubMed  Google Scholar 

  51. Kobayashi T, Minowa O, Sugitani Y, et al. A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A. 2001;98(15):8762–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kwiatkowski DJ, Zhang H, Bandura JL, et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet. 2002;11(5):525–34.

    Article  CAS  PubMed  Google Scholar 

  53. Jaeschke A, Hartkamp J, Saitoh M, et al. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol. 2002;159(2):217–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Franz DN, Leonard J, Tudor C, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol. 2006;59(3):490–8.

    Article  CAS  PubMed  Google Scholar 

  55. Koenig MK, Butler IJ, Northrup H. Regression of subependymal giant cell astrocytoma with rapamycin in tuberous sclerosis complex. J Child Neurol. 2008;23(10):1238–9.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Lam C, Bouffet E, Tabori U, et al. Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors. Pediatr Blood Cancer. 2010;54(3):476–9.

    Article  PubMed  Google Scholar 

  57. Yalon M, Ben-Sira L, Constantini S, Toren A. Regression of subependymal giant cell astrocytomas with RAD001 (Everolimus) in tuberous sclerosis complex. Childs Nerv Syst. 2011;27(1):179–81.

    Article  PubMed  Google Scholar 

  58. Perek-Polnik M, Jozwiak S, Jurkiewicz E, et al. Effective everolimus treatment of inoperable, life-threatening subependymal giant cell astrocytoma and intractable epilepsy in a patient with tuberous sclerosis complex. Eur J Paediatr Neurol. 2012;16(1):83–5.

    Article  PubMed  Google Scholar 

  59. Krueger DA, Care MM, Holland K, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363(19):1801–11.

    Article  CAS  PubMed  Google Scholar 

  60. Krueger DA, Care MM, Agricola K, et al. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology. 2013;80(6):574–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Tillema JM, Leach JL, Krueger DA, Franz DN. Everolimus alters white matter diffusion in tuberous sclerosis complex. Neurology. 2012;78(8):526–31.

    Article  CAS  PubMed  Google Scholar 

  62. Afinitor [prescribing information]. East Hanover: Novartis Pharmaceuticals Corporation; 2013.

    Google Scholar 

  63. Franz DN, Belousova E, Sparagana S, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381(9861):125–32.

    Article  CAS  PubMed  Google Scholar 

  64. Bissler JJ, Kingswood JC, Radzikowska E, et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2013;381:817–24.

    Article  CAS  PubMed  Google Scholar 

  65. Zeng LH, Rensing NR, Zhang B, et al. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet. 2011;20(3):445–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Meikle L, Pollizzi K, Egnor A, et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci. 2008;28(21):5422–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Ljungberg MC, Sunnen CN, Lugo JN, et al. Rapamycin suppresses seizures and neuronal hypertrophy in a mouse model of cortical dysplasia. Dis Model Mech. 2009;2(7–8):389–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Goto J, Talos DM, Klein P, et al. Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc Natl Acad Sci U S A. 2011;108(45):E1070–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci. 2009;29(21):6964–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Ehninger D, Han S, Shilyansky C, et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med. 2008;14(8):843–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Krueger DA, Wilfong AA, Holland-Bouley K, et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol. 2013. doi:10.1002/ana.23960 [Published online June 24, 2013].

    PubMed  Google Scholar 

  72. Lee L, Sudentas P, Donohue B, et al. Efficacy of a rapamycin analog (CCI-779) and IFN-gamma in tuberous sclerosis mouse models. Genes Chromosomes Cancer. 2005;42(3):213–27.

    Article  CAS  PubMed  Google Scholar 

  73. Pollizzi K, Malinowska-Kolodziej I, Stumm M, et al. Equivalent benefit of mTORC1 blockade and combined PI3K-mTOR blockade in a mouse model of tuberous sclerosis. Mol Cancer. 2009;8:38.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Kenerson H, Dundon TA, Yeung RS. Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatr Res. 2005;57(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  75. Wienecke R, Fackler I, Linsenmaier U, et al. Antitumoral activity of rapamycin in renal angiomyolipoma associated with tuberous sclerosis complex. Am J Kidney Dis. 2006;48(3):e27–9.

    Article  PubMed  Google Scholar 

  76. Herry I, Neukirch C, Debray MP, et al. Dramatic effect of sirolimus on renal angiomyolipomas in a patient with tuberous sclerosis complex. Eur J Intern Med. 2007;18(1):76–7.

    Article  PubMed  Google Scholar 

  77. Peces R, Peces C, Cuesta-Lopez E, et al. Low-dose rapamycin reduces kidney volume angiomyolipomas and prevents the loss of renal function in a patient with tuberous sclerosis complex. Nephrol Dial Transplant. 2010;25(11):3787–91.

    Article  PubMed  Google Scholar 

  78. Micozkadioglu H, Koc Z, Ozelsancak R, Yildiz I. Rapamycin therapy for renal, brain, and skin lesions in a tuberous sclerosis patient. Ren Fail. 2010;32(10):1233–6.

    Article  PubMed  Google Scholar 

  79. Bujalance-Cabrera C, Vaquero-Barrios JM, Redel-Montero J, et al. Reduction in size of renal angiomyolipoma after treatment with everolimus in lung transplantation due to lymphangioleiomyomatosis. Arch Bronconeumol. 2012;48(12):479–81.

    Article  PubMed  Google Scholar 

  80. Bissler JJ, McCormack FX, Young LR, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med. 2008;358(2):140–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Davies DM, de Vries PJ, Johnson SR, et al. Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res. 2011;17(12):4071–81.

    Article  CAS  PubMed  Google Scholar 

  82. Dabora SL, Franz DN, Ashwal S, et al. Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress and VEGF- D levels decrease. PLoS One. 2011;6(9), e23379.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Goncharova EA, Goncharov DA, Fehrenbach M, et al. Prevention of alveolar destruction and airspace enlargement in a mouse model of pulmonary lymphangioleiomyomatosis (LAM). Sci Transl Med. 2012;4(154):154ra134.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Liu F, Lunsford EP, Tong J, et al. Real-time monitoring of tumorigenesis, dissemination, & drug response in a preclinical model of lymphangioleiomyomatosis/tuberous sclerosis complex. PLoS One. 2012;7(6), e38589.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Lesma E, Eloisa C, Isaia E, et al. Development of a lymphangioleiomyomatosis model by endonasal administration of human TSC2−/− smooth muscle cells in mice. Am J Pathol. 2012;181(3):947–60.

    Article  CAS  PubMed  Google Scholar 

  86. Sugimoto R, Nakao A, Yamane M, et al. Sirolimus amelioration of clinical symptoms of recurrent lymphangioleiomyomatosis after living-donor lobar lung transplantation. J Heart Lung Transplant. 2008;27(8):921–4.

    Article  PubMed  Google Scholar 

  87. Chen F, Omasa M, Kondo N, et al. Sirolimus treatment for recurrent lymphangioleiomyomatosis after lung transplantation. Ann Thorac Surg. 2009;87(1):e6–7.

    Article  PubMed  Google Scholar 

  88. Peces R, Cuesta-Lopez E, Peces C, Selgas R. Giant bilateral renal angiomyolipomas and lymphangioleiomyomatosis presenting after two successive pregnancies successfully treated with surgery and rapamycin. Scientific World Journal. 2011;11:2115–23.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Neurohr C, Hoffmann AL, Huppmann P, et al. Is sirolimus a therapeutic option for patients with progressive pulmonary lymphangioleiomyomatosis? Respir Res. 2011;12:66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Chachaj A, Drozdz K, Chabowski M, et al. Chyloperitoneum, chylothorax and lower extremity lymphedema in woman with sporadic lymphangioleiomyomatosis successfully treated with sirolimus: a case report. Lymphology. 2012;45(2):53–7.

    CAS  PubMed  Google Scholar 

  91. Moua T, Olson EJ, Jean HC, Ryu JH. Resolution of chylous pulmonary congestion and respiratory failure in lymphangioleiomyomatosis with sirolimus therapy. Am J Respir Crit Care Med. 2012;186(4):389–90.

    Article  PubMed  Google Scholar 

  92. Taveira-DaSilva AM, Hathaway O, Stylianou M, Moss J. Changes in lung function and chylous effusions in patients with lymphangioleiomyomatosis treated with sirolimus. Ann Intern Med. 2011;154(12):797–805, W-292-793.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Piha-Paul SA, Hong DS, Kurzrock R. Response of lymphangioleiomyomatosis to a mammalian target of rapamycin inhibitor (temsirolimus) -based treatment. J Clin Oncol. 2011;29(12):e333–5.

    Article  PubMed  Google Scholar 

  94. Tiberio D, Franz DN, Phillips JR. Regression of a cardiac rhabdomyoma in a patient receiving everolimus. Pediatrics. 2011;127(5):e1335–7.

    Article  PubMed  Google Scholar 

  95. Capdevila J, Salazar R, Halperin I, et al. Innovations therapy: mammalian target of rapamycin (mTOR) inhibitors for the treatment of neuroendocrine tumors. Cancer Metastasis Rev. 2011;30 suppl 1:27–34.

    Article  CAS  PubMed  Google Scholar 

  96. Pal SK, Quinn DI. Differentiating mTOR inhibitors in renal cell carcinoma. Cancer Treat Rev. 2013. doi:10.1016/j.ctrv.2012.12.015 [Published online February 20, 2013].

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag France

About this chapter

Cite this chapter

Shah, G., Stergiopoulos, S., Lebwohl, D. (2016). New Indications of mTOR Inhibitors in Rare Tumors. In: Mita, M., Mita, A., Rowinsky, E. (eds) mTOR Inhibition for Cancer Therapy: Past, Present and Future. Springer, Paris. https://doi.org/10.1007/978-2-8178-0492-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0492-7_6

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0491-0

  • Online ISBN: 978-2-8178-0492-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics