Skip to main content

Geometric Properties of Mittag-Leffler Functions

  • Chapter
  • First Online:
Models and Theories in Social Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 179))

Abstract

In recent decades the attention towards Mittag-Leffler type functions has deepened due to their direct involvement in problems of physics, biology, chemistry, engineering and other applied sciences. More precisely, applications of Mittag-Leffler functions appear in stochastic systems (Polito and Scalas (2016)), statistical distribution with results obtained by Pillai (1990), dynamical models investigated by An et al. (2012) etc. Special emphasis should be placed on the applications of Mittag-Leffler type functions in fractional calculus (Kilbas et al. (2004), Srivastava and Tomovski (2009)) and also fractional differential and integral equations such as: diffusion equation with results obtained by Langlands (2006) and Yu and Zhang (2006), telegraph equation (Camargo et al. (2012)), kinetic equation (Metzler and Klafter (2000)), Abel type integral equations investigated by Kilbas and Saigo (1995) just to mention a few.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, J.W.: Functions which map the interior of the unit circle upon simple regions. Ann. Math. 17, 12–22 (1915)

    Article  MathSciNet  Google Scholar 

  • An, J., Van Hese, E., Baes, M.: Phase-space consistency of stellar dynamical models determined by separable augmented densities. Mon. Nat. R. Astron. Soc. 422(1), 652–664 (2012)

    Article  Google Scholar 

  • Attiya, A.A.: Some applications of Mittag-Leffler function in the unit disk. Filomat 30, 2075–2081 (2016)

    Article  MathSciNet  Google Scholar 

  • Bansal, D., Prajapat, J.K.: Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 61(3), 338–350 (2016)

    Article  MathSciNet  Google Scholar 

  • Baricz, Á.: Geometric properties of generalized Bessel functions. Publ. Math. 73, 155–178 (2008). Debrecen

    Google Scholar 

  • Camargo, R.F., Oliveira, A.C., Vaz Jr., J.: On the generalized Mittag-Leffler function and its application in a fractional telegraph equation. Math. Phys. Anal. Geom. 15, 1–16 (2012)

    Article  MathSciNet  Google Scholar 

  • Goodman, A.E.: Univalent Functions, vol. 1–2. Mariner Publishing Company, Inc., Florida (1983)

    Google Scholar 

  • Gorenflo, R., Mainardi, F., Rogosin, S.V.: On the generalized Mittag-Leffler functions. Integral Transform. Spec. Funct. 7, 215–224 (1998)

    Article  MathSciNet  Google Scholar 

  • Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions. Related Topics and Applications. Springer, Heildeberg (2014)

    MATH  Google Scholar 

  • Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 51 (2011). Art.ID 298628

    Google Scholar 

  • Kanas, S., Wisniowska, A.: Conic regions and k-uniform convexity. J. Comput. Appl. Math. 105, 327–336 (1999)

    Article  MathSciNet  Google Scholar 

  • Kanas, S., Wisniowska, A.: Conic regions and k-starlike functions. Rev. Roumaine Math. Pures Appl. 45(4), 647–657 (2000)

    MathSciNet  MATH  Google Scholar 

  • Kilbas, A.A., Saigo, M.: Solution of Abel type integral equations of the second kind and of differential equations of fractional order. Integral Transform. Spec. Funct. 95(5), 29–34 (1995)

    Google Scholar 

  • Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform. Spec. Funct. 15, 31–49 (2004)

    Article  MathSciNet  Google Scholar 

  • Kilbas, A.A., Koroleva, A.A., Rogosin, S.V.: Multi-parametric Mittag-Leffler functions and their extension. Frac. Calc. Appl. Anal. 16(2), 378–404 (2013)

    MathSciNet  MATH  Google Scholar 

  • Kiryakova, V.: The multi-index Mittag-Leffler functions as an important class of special functions in fractional calculus. Comput. Math. Appl. 59(5), 1885–1895 (2010)

    Article  MathSciNet  Google Scholar 

  • Langlands, T.A.M.: Solution of modified fractional diffusion equation. Physica A 367, 136–144 (2006)

    Article  MathSciNet  Google Scholar 

  • Lavault C.: Fractional calculus and generalized Mittag-Leffler functions, arXiv:1703.01912v2, 2017

  • Metzler, Klafter J.: The random walk’s guides to anomalous diffusion: a fractional kinetic equation. Phys. Rep. 339, 1–77 (2000)

    Article  Google Scholar 

  • Mittag-Leffler, G.M.: Sur la nouvelle fonction \(E_\alpha (x)\). C. R. Acad. Sci. Paris 137, 554–558 (1903)

    MATH  Google Scholar 

  • Mondal, S.R., Swaminathan, A.: Geometric properties of Bessel functions. Bull. Malays. Math. Sci. Soc. 35(1), 179–194 (2012)

    MathSciNet  MATH  Google Scholar 

  • Owa, S., Nunokawa, M., Saitoh, H., Srivastava, H.M.: Close-to-convexity, starlikeness and convexity of certain analytic functions. Appl. Math. Lett. 15, 63–69 (2002)

    Article  MathSciNet  Google Scholar 

  • Ozaki, S.: On the theory of multivalent functions. Sci. Rep. 2, 167–188 (1935). Tokyo Bunrika Daigaku

    Google Scholar 

  • Pillai, R.N.: On Mittag-Leffler functions and related distributions. Ann. Inst. Stat. Math. 42(1), 157–161 (1990)

    Article  MathSciNet  Google Scholar 

  • Polito, F., Scalas, E.: A generalization of the space fractional Poisson process and its connection to some Lévy process. Electron. Commun. Prob. 21(20) (2016)

    Google Scholar 

  • Ponnusamy, S.: Close-to-convexity properties of Gaussian hypergeometric functions. J. Comput. Appl. Math. 88, 328–337 (1997)

    MathSciNet  Google Scholar 

  • Ponnusamy, S., Vuorinen, M.: Univalence and convexity properties of confluent hypergeometric functions. Complex. Var. Elliptic Equ. 36, 73–97 (1998)

    MathSciNet  MATH  Google Scholar 

  • Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1997)

    MathSciNet  MATH  Google Scholar 

  • Prajapat, J.K.: Certain geometric properties of the Wright function. Integral Transform. Spec. Funct. 26(3), 203–312 (2014)

    Article  MathSciNet  Google Scholar 

  • Răducanu, D.: Third-order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions. Mediterr. J. Math. 14(167), 18 (2017)

    MathSciNet  MATH  Google Scholar 

  • Raza, M., Din, M.U., Malik, S.N.: Certain geometric properties of normalized Wright functions. J. Funct. Space, 8 (2016). Art.ID 1896154

    Google Scholar 

  • Salim, T.: Some properties relating to the generalized Mittag-Leffler function. Adv. Appl. Math. Anal. 4, 21–30 (2009)

    Google Scholar 

  • Salim, T., Faraj, A.: A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. J. Frac. Calc. Appl. 3(5), 1–13 (2012)

    Google Scholar 

  • Silverman, H.: Univalent functions with negative coefficients. Proc. Am. Math. Soc. 51, 109–116 (1975)

    Article  MathSciNet  Google Scholar 

  • Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009)

    MathSciNet  MATH  Google Scholar 

  • Srivastava, H.M., Frasin, B.A., Pescar, V.: Univalence of integral operators involving Mittag-Leffler functions. Appl. Math. Inf. Sci. 11(3), 635–461 (2017)

    Article  MathSciNet  Google Scholar 

  • Wiman, A.: Über den Fundamental satz in der Theorie der Funcktionen \(E_\alpha (x)\). Acta Math. 29, 191–201 (1905)

    Article  MathSciNet  Google Scholar 

  • Yagmur, N., Orhan, H.: Starlikeness and convexity of generalized Struve functions. Abst. Appl. Anal. 6 (2013). Art.ID 954513

    Google Scholar 

  • Yu, R., Zhang, H.: New function of Mittag-Leffler type and its applications in the fractional diffusion-wave equation. Chaos Solitons Fractals 30, 946–955 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorina Răducanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Răducanu, D. (2019). Geometric Properties of Mittag-Leffler Functions. In: Flaut, C., Hošková-Mayerová, Š., Flaut, D. (eds) Models and Theories in Social Systems. Studies in Systems, Decision and Control, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-030-00084-4_22

Download citation

Publish with us

Policies and ethics