Skip to main content

Performance Evaluation of an LQG Controller of a Robotic Link with Fractional Dampers Based on Their Integer–Order Approximation

  • Conference paper
  • First Online:
Mechanism Design for Robotics (MEDER 2018)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 66))

Included in the following conference series:

Abstract

Accurate modelling of robotic links may lead to fractional–order descriptions that complicate controller synthesis. This paper explores whether an LQG controller derived for an integer–order approximation can be applied to the original fractional–order model without appreciably degrading the system performance. Simulations show that this is the case for a fairly large range of orders of fractional derivatives and related combination coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bryson suggests to use diagonal matrices Q and R and to choose the diagonal entries according to the maximum acceptable values (m.a.v.). In particular, \(Q_{ii}=( m.a.v. of x_i)^{-2}\) and \(R_{ii}=( m.a.v. of u_i)^{-2}\).

References

  1. Boscariol, P., Gallina, P., Gasparetto, A., Giovagnoni, M., Scalera, L., Vidoni, R.: Evolution of a dynamic model for flexible multibody systems. In: Boschetti, G., Gasparetto, A. (eds.) Advances in Italian Mechanism Science. Mechanisms and Machine Science, vol. 47, pp. 533–541. Springer, Cham (2017)

    MATH  Google Scholar 

  2. Casagrande, D., Krajewski, W., Viaro, U.: Fractional-order system forced-response decomposition and its application. In: Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Linear and Nonlinear Fractional Order Systems, Analysis and Applications. Elsevier, Amsterdam (2018)

    MATH  Google Scholar 

  3. Chen, B., Li, C., Wilson, B., Huang, Y.: Fractional modeling and analysis of coupled MR damping system. IEEE/CAA J. Autom. Sin. 3(3), 288–294 (2016)

    Article  MathSciNet  Google Scholar 

  4. Delavari, H., Lanusse, P., Sabatier, J.: Fractional order controller design for a flexible link manipulator robot. Asian J. Control 15, 783–795 (2013)

    Article  MathSciNet  Google Scholar 

  5. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators: a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)

    Article  MathSciNet  Google Scholar 

  6. Fadiga, L., Farges, C., Sabatier, J., Santigini, K.: \(H_{\infty }\) output feedback control of commensurate fractional order systems. In: Proceedings of European Control Conference, Zürich, Switzerland, pp. 4538–4543, 17–19 July 2013

    Google Scholar 

  7. Gasparetto, A., Miani, S.: Dynamic model of a rotating channel used in the steel industry and controller implementation. J. Vib. Control. 10(3), 423–445 (2004)

    Google Scholar 

  8. Gómez-Aguilar, J.F., Yépez-Martínez, H., Calderón-Ramón, C., Cruz-Orduña, I., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H.: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 17, 6289–6303 (2015)

    Article  MathSciNet  Google Scholar 

  9. Goodwine, B.: Modeling a multi-robot system with fractional-order differential equations. In: Proceedings of IEEE Conference on Robotics and Automation, Hong Kong, China, pp. 1763–1768, 31 May–7 June 2014

    Google Scholar 

  10. Holm, S.: Spring-damper equivalents of the fractional, poroelastic, and poroviscoelastic models for elastography. NMR Biomed., 1–12 (2017). https://doi.org/10.1002/nbm.3854

    Article  Google Scholar 

  11. Jin, C.Y., Ryu, K.H., Sung, S.W., Lee, J., Lee, I.B.: PID autotuning using new model reduction method and explicit PID tuning rule for a fractional order plus time delay model. J. Process Control 24, 113–128 (2014)

    Article  Google Scholar 

  12. Krajewski, W., Viaro, U.: A method for the integer-order approximation of fractional-order systems. J. Franklin Inst. 351, 555–564 (2014)

    Article  Google Scholar 

  13. Krajewski, W., Viaro, U.: Fractional order PI controllers for TCP packet flow ensuring given modulus margins. Control Cybern. 43(4), 493–505 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Kubyshkin, V., Postnov, S.: Optimal control problem for linear fractional-order systems. In: Proceedings of IEEE International Conference on Fractional Differentiation and Its Applications (ICFDA), Catania, Italy, 23–25 June 2014

    Google Scholar 

  15. Lewandowski, R., Lenkowska, A.: Steady-state response of systems with fractional dampers. In: IOP Conference Series: Material Science and Engineering, vol. 251, pp. 1–11 (2017). https://doi.org/10.1088/1757-899X/251/1/012091

    Article  Google Scholar 

  16. Li, Y., Chen, Y.Q.: Fractional order linear quadratic regulator. In: Proceedings of IEEE/ASME Symposium on Mechatronics Control and Manufacturing, pp. 363–368 (2008)

    Google Scholar 

  17. Mayes, J., Sen, M.: Approximation of potential-driven flow dynamics in large-scale self-similar tree networks. Proc. R. Soc. A 467, 2810–2824 (2011)

    Article  MathSciNet  Google Scholar 

  18. Müller, S., Kästner, M., Brummund, J., Ulbricht, V.: A nonlinear fractional viscoelastic material model for polymers. Comput. Mater. Sci. 50, 2938–2949 (2011)

    Article  Google Scholar 

  19. Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21, 69–81 (2011)

    Article  Google Scholar 

  20. Sabatier, J., Farges, C., Trigeassou, J.C.: Fractional systems state space descriptions: some wrong ideas and proposed solutions. J. Vibr. Control 20, 1076–1084 (2014)

    Article  MathSciNet  Google Scholar 

  21. Schiessel, H., Metzler, R., Blumen, A., Nonnenmacher, T.F.: Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A Math. Gen. 28, 6567–6584 (1995)

    Article  Google Scholar 

  22. Sierociuk, D., Vinagre, B.M.: Infinite horizon state-feedback LQR controller for fractional systems. In: Proceedings of IEEE Conference on Decision and Control, Atlanta, GA, USA, pp. 6674–6679, 15–17 December 2010

    Google Scholar 

  23. Tavakoli-Kakhki, M., Haeri, M.: Model reduction in commensurate fractional-order linear systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223(4), 493–505 (2009)

    Article  Google Scholar 

  24. Tavakoli-Kakhki, M., Haeri, M.: Fractional order model reduction approach based on retention of the dominant dynamics: application in IMC based tuning of FOPI and FOPID controllers. ISA Trans. 50, 432–442 (2011)

    Article  Google Scholar 

  25. Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCON: Fractional-order modeling and control toolbox for MATLAB. In: Proceedings of the 18th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), Gliwice, Poland, pp. 1–6, 16–18 June 2011

    Google Scholar 

  26. Valério, D., Sá da Costa, J.: Fractional Order Control of a Flexible Robot. Department of Mechanical Engineering, Lisbon, Portugal, GCAR (2004). http://web.ist.utl.pt/duarte.valerio/FDAbook2005.pdf

  27. Xue, D.: Fractional-Order Control Systems - Fundamentals and Numerical Implementations. De Gruyter, Berlin (2017)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Miani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casagrande, D., Krajewski, W., Miani, S., Viaro, U. (2019). Performance Evaluation of an LQG Controller of a Robotic Link with Fractional Dampers Based on Their Integer–Order Approximation. In: Gasparetto, A., Ceccarelli, M. (eds) Mechanism Design for Robotics. MEDER 2018. Mechanisms and Machine Science, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-030-00365-4_29

Download citation

Publish with us

Policies and ethics