Skip to main content

Interaction of Gravity with Cell Metabolism

  • Chapter
  • First Online:
Gravitational Biology II

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

  • 312 Accesses

Abstract

Plants orient their organs, explore, and adapt to their environment mainly by sensing light and the direction of gravity. Some theories exist about gravity sensing including as a starting point the presence of dense sedimentable particles in specialized gravity-sensing cell types or protoplast-pressure phenomena inducing a cascade of biophysical and biochemical events that finally transform the directional information into gravioriented growth. However, apart from the directional information, plant cells show various more general gravity effects like changes in membrane-located processes and changes in gene expression, protein expression, and protein modulation as well as metabolic consequences in response to altered gravity conditions. In the following, mainly based on data from callus cultures of A. thaliana, we summarize the present knowledge in the field of gravity-affected cell metabolism, especially related to Ca2+ and hydrogen peroxide signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar R, Montoya L, de Jiménez ES (1998) Synthesis and phosphorylation of maize acidic ribosomal proteins implications in translational regulation. Plant Physiol 116(1):379–385

    Article  CAS  PubMed Central  Google Scholar 

  • Allen GJ, Kwak JM, Chu SP, Llopis J, Tsien RY, Harper JF, Schroeder JI (1999) Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19(6):735–747

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubry-Hivet D, Nziengui H, Rapp K, Oliveira O, Paponov I, Li Y, Hauslage J, Vagt N, Braun M, Ditengou FA (2014) Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots. Plant Biol 16(s1):129–141

    Article  PubMed  Google Scholar 

  • Babbick M, Cogoli-Greuter M, Lowe KC, Power JB, Anthony P, Dijkstra C, Davey MR, Hampp R (2005) Gravitational field related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. In: 17th ESA symposium on European rocket and balloon programmes and related research, pp 493–497

    Google Scholar 

  • Babbick M, Dijkstra C, Larkin O, Anthony P, Davey M, Power J, Lowe K, Cogoli-Greuter M, Hampp R (2007) Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation). Adv Space Res 39(7):1182–1189

    Article  Google Scholar 

  • Bailey-Serres J, Vangala S, Szick K, Lee C-HK (1997) Acidic phosphoprotein complex of the 60S ribosomal subunit of maize seedling roots (components and changes in response to flooding). Plant Physiol 114(4):1293–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baluska F, Hasenstein KH (1997) Root cytoskeleton: its role in perception of and response to gravity. Planta 203(Suppl):S69–S78

    Article  CAS  PubMed  Google Scholar 

  • Barjaktarović Ž, Nordheim A, Lamkemeyer T, Fladerer C, Madlung J, Hampp R (2007) Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J Exp Bot 58(15–16):4357–4363

    Article  PubMed  CAS  Google Scholar 

  • Barjaktarović Ž, Babbick M, Nordheim A, Lamkemeyer T, Magel E, Hampp R (2009a) Alterations in protein expression of Arabidopsis thaliana cell cultures during hyper-and simulated microgravity. Microgravity Sci Technol 21(1–2):191–196

    Article  CAS  Google Scholar 

  • Barjaktarović Ž, Schütz W, Madlung J, Fladerer C, Nordheim A, Hampp R (2009b) Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. J Exp Bot 60(3):779–789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batistic O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta 1820:1283–1293

    Article  CAS  PubMed  Google Scholar 

  • Baumstark-Khan C, Hellweg CE, Arenz A, Meier MM (2005) Cellular monitoring of the nuclear factor κB pathway for assessment of space environmental radiation. Radiat Res 164(4):527–530

    Article  CAS  PubMed  Google Scholar 

  • Behera S, Krebs M, Loro G, Schumacher K, Costa A, Kudla J (2013) Ca2+ imaging in plants using genetically encoded yellow cameleon Ca2+ indicators. Cold Spring Harb Protoc 2013(8):700–703

    Article  PubMed  Google Scholar 

  • Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Meth 3(4):281–286

    Article  CAS  Google Scholar 

  • Bose S, Stratford FL, Broadfoot KI, Mason GG, Rivett AJ (2004) Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem J 378(Pt 1):177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun M, Limbach C (2006) Rhizoids and protonemata of characean algae: model cells for research on polarized growth and plant gravity sensing. Protoplasma 229(2–4):133–142

    Article  CAS  PubMed  Google Scholar 

  • Catherall A, Lopez-Alcaraz P, Benedict K, King P, Eaves L (2005) Cryogenically enhanced magneto-Archimedes levitation. New J Phys 7(1):118

    Article  CAS  Google Scholar 

  • Chen R, Guan C, Boonsirichai K, Masson PH (2002) Complex physiological and molecular processes underlying root gravitropism. Plant Mol Biol 49(3–4):305–317

    Article  CAS  PubMed  Google Scholar 

  • Correll MJ, Pyle TP, Millar KD, Sun Y, Yao J, Edelmann RE, Kiss JZ (2013) Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238(3):519–533

    Article  CAS  PubMed  Google Scholar 

  • Costa A, Drago I, Behera S, Zottini M, Pizzo P, Schroeder JI, Pozzan T, Lo Schiavo F (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca(2+)-dependent scavenging system. Plant J 62(5):760–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell JS, London U (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  PubMed  Google Scholar 

  • Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139(2):847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Pino V, Borán M, Norambuena L, González M, Reyes F, Orellana A, Moreno S (2007) Complex formation regulates the glycosylation of the reversibly glycosylated polypeptide. Planta 226(2):335–345

    Article  PubMed  CAS  Google Scholar 

  • Delgado IJ, Wang Z, de Rocher A, Keegstra K, Raikhel NV (1998) Cloning and characterization of AtRGP1 a reversibly autoglycosylated Arabidopsis protein implicated in cell wall biosynthesis. Plant Physiol 116(4):1339–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206

    Article  CAS  PubMed  Google Scholar 

  • Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao T-h, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13(4):907–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasano JM, Massa GD, Gilroy S (2002) Ionic signaling in plant responses to gravity and touch. J Plant Growth Regul 21(2):71–88

    Article  CAS  PubMed  Google Scholar 

  • Feige B, Gimmler H, Jeschke WD, Simonis W (1969) Eine Methode zur dünnschicht-chromatographischen Auftrennung von 14C- und 32P-markierten Stoffwechselprodukten. J Chromatogr 41:775–782

    Article  Google Scholar 

  • Fengler S, Spirer I, Neef M, Ecke M, Hauslage J, Hampp R (2015a) Changes in gene expression of Arabidopsis thaliana cell cultures upon exposure to real and simulated partial-g forces. Microgravity Sci Technol 28:319–329. https://doi.org/10.1007/s12217-015-9452-y

    Article  Google Scholar 

  • Fengler S, Spirer I, Neef M, Ecke M, Nieselt K, Hampp R (2015b) A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on Board of Shenzhou 8. BioMed Res Int 2015:547495. https://doi.org/10.1155/2015:547495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forsthoefel NR, Cushman MAF, Cushman JC (1995) Posttranscriptional and posttranslational control of enolase expression in the facultative Crassulacean acid metabolism plant Mesembryanthemum crystallinum L. Plant Physiol 108(3):1185–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring CA, Irving HR, Parish RW (1990) Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci 87(24):9645–9649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilroy S, Bethke PC, Jones RL (1993) Calcium homeostasis in plants. J Cell Sci 106(2):453–461

    CAS  PubMed  Google Scholar 

  • Grant CM (2008) Metabolic reconfiguration is a regulated response to oxidative stress. J Biol 7(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Gress TM, Hoheisel JD, Lennon GG, Zehetner G, Lehrach H (1992) Hybridization fingerprinting of high-density cDNA-library arrays with cDNA pools derived from whole tissues. Mamm Genome 3(11):609–619

    Article  CAS  PubMed  Google Scholar 

  • Häder D-P, Hemmersbach R (1997) Graviperception and graviorientation in flagellates. Planta 203(1):S7–S10

    Article  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampp R, Goller M, Füllgraf H, Eberle I (1985) Pyridine and adenine nucleotide status, and pool sizes of a range of metabolites in chloroplasts, mitochondria and the cytosol/vacuole of Avena mesophyll protoplasts during dark/light transition: effect of pyridoxal phosphate. Plant Cell Physiol 26(1):99–108

    CAS  Google Scholar 

  • Hampp R, Naton B, Hoffmann E, Mehrle W, Schönherr K, Hemmersbach-Krause R (1992) Hybrid formation and metabolism of plant cell protoplasts under microgravity. Physiologist 35(Suppl):S27–S30

    CAS  PubMed  Google Scholar 

  • Hampp R, Hoffmann E, Schönherr K, Johann P, De Filippis L (1997) Fusion and metabolism of plant cells as affected by microgravity. Planta 203(Suppl):S42–S53

    Article  CAS  PubMed  Google Scholar 

  • Hampp R, Maier R, Martzivanou M, Ecke M, Magel E (2001) Gravitational effects on metabolism and gene expression of Arabidopsis thaliana cell cultures. In: Proceedings of 15th ESA symposium on European rocket and balloon programmes, Biarritz, pp 399–403

    Google Scholar 

  • Hausmann N, Fengler S, Hennig A, Franz-Wachtel M, Hampp R, Neef M (2014) Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data. Plant Biol (Stuttg) 16(Suppl 1):120–128

    Article  Google Scholar 

  • Hoffmann E, Schonherr K, Hampp R (1996) Regeneration of plant cell protoplasts under microgravity: investigation of protein patterns by SDS-PAGE and immunoblotting. Plant Cell Rep 15:914–919

    Article  CAS  PubMed  Google Scholar 

  • Horneck G (1992) Radiobiological experiments in space: a review. Int J Radiat Appl Instrum D 20(1):185–205

    CAS  Google Scholar 

  • Horneck G (1999) Astrobiology studies of microbes in simulated interplanetary space. In: Laboratory astrophysics and space research. Springer, Dordrecht, pp 667–685

    Chapter  Google Scholar 

  • Hoson T, Soga K (2003) New aspects of gravity responses in plant cells. Int Rev Cytol 229:209–244

    Article  CAS  PubMed  Google Scholar 

  • Hoson T, Soga K, Mori R, Saiki M, Nakamura Y, Wakabayashi K, Kamisaka S (2002) Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant Cell Physiol 43(9):1067–1071

    Article  CAS  PubMed  Google Scholar 

  • Hoson T, Soga K, Wakabayashi K, Kamisaka S, Tanimoto E (2003) Growth and cell wall changes in rice roots during spaceflight. In: Roots: the dynamic interface between plants and the earth. Springer, Dordrecht, pp 19–26

    Chapter  Google Scholar 

  • Johannes E, Collings DA, Rink JC, Allen NS (2001) Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes. Plant Physiol 127(1):119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karl T (2015) Microgravity-dependent changes of proteome phosphorylation in Arabidopsis thaliana cell cultures. Master thesis, University of Tuebingen

    Google Scholar 

  • Kennedy AR (2014) Biological effects of space radiation and development of effective countermeasures. Life Sci Space Res 1:10–43

    Article  Google Scholar 

  • Kimbrough JM, Salinas-Mondragon R, Boss WF, Brown CS, Sederoff HW (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol 136(1):2790–2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss JZ (2000) Mechanisms of the early phases of plant gravitropism. Crit Rev Plant Sci 19(6):551–573

    Article  CAS  PubMed  Google Scholar 

  • Kiss JZ, Kumar P, Millar KD, Edelmann RE, Correll MJ (2009) Operations of a spaceflight experiment to investigate plant tropisms. Adv Space Res 44(8):879–886

    Article  Google Scholar 

  • Klychnikov O, Li K, Lill H, De Boer A (2006) The V-ATPase from etiolated barley (Hordeum vulgare L.) shoots is activated by blue light and interacts with 14-3-3 proteins. J Exp Bot 58(5):1013–1023

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Recombinant aequorin methods for measurement of intracellular calcium in plants. Plant Mol Biol Manual C4:1–22

    Google Scholar 

  • Kraft TF, van Loon JJ, Kiss JZ (2000) Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Planta 211(3):415–422

    Article  CAS  PubMed  Google Scholar 

  • Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K (2012) FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics. Plant J 69(1):181–192

    Article  CAS  PubMed  Google Scholar 

  • Lal SK, Lee C, Sachs MM (1998) Differential regulation of enolase during anaerobiosis in maize. Plant Physiol 118(4):1285–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16(2):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limbach C, Hauslage J, Schafer C, Braun M (2005) How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol 139(2):1030–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin WH, Rui Y, Hui M, Xu ZH, Xue HW (2004) DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell Res 14(1):34–45

    Article  CAS  PubMed  Google Scholar 

  • Link BM, Wagner ER, Cosgrove DJ (2001) The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus. Physiol Plant 113(2):292–300

    Article  CAS  PubMed  Google Scholar 

  • Lu Y-T, Feldman LJ (1997) Light-regulated root gravitropism: a role for, and characterization of, a calcium/calmodulin-dependent protein kinase homolog. Planta 203:S91–S97

    Article  CAS  PubMed  Google Scholar 

  • Maier R-M, Martzivanou M, Magel E, Zheng H, Cogoli-Greuter M, Hampp R (2003) Anaplerotic responses of “Arabidopsis thaliana” cell cultures to altered gravitational field strengths. In: European rocket and balloon programmes and related research, pp 253–258

    Google Scholar 

  • Manzano AI, Van Loon JJ, Christianen PC, Gonzalez-Rubio JM, Medina FJ, Herranz R (2012) Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genomics 13(1):105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marco R, Leandro-Garcia LJ, Benguria A, Herranz R, Zeballos A, Gassert G, van Loon JJ, Medina FJ (2006) Gene expression variations during Drosophila metamorphosis in real and simulated gravity. In: 36th COSPAR scientific assembly, Beijing, 16–23 July

    Google Scholar 

  • Martzivanou M (2004) Expressionsanalysen an Arabidopsis thaliana Kalluskulturzellen unter verschiedenen Gravitationsbedingungen. PhD thesis, University of Tübingen

    Google Scholar 

  • Martzivanou M, Hampp R (2003) Hyper-gravity effects on the Arabidopsis transcriptome. Physiol Plant 118(2):221–231

    Article  CAS  PubMed  Google Scholar 

  • Martzivanou M, Babbick M, Cogoli-Greuter M, Hampp R (2006) Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma 229:155–162

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133(3):481–489

    Article  CAS  PubMed  Google Scholar 

  • Minic Z, Jouanin L (2006) Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol Biochem 44(7):435–449

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96(5):2135–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseyko N, Zhu T, Chang HS, Wang X, Feldman LJ (2002) Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol 130(2):720–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101(29):10554–10559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasir A, Strauch S, Becker I, Sperling A, Schuster M, Richter P, Weißkopf M, Ntefidou M, Daiker V, An Y (2014) The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. Plant Biol 16(s1):113–119

    Article  PubMed  Google Scholar 

  • Neef M, Hennig A, Hausmann N, Hampp R (2011) A parabolic flight profile as reflected by fluctuations in cytosolic calcium and gene expression of plant cells. In: 20th symposium on European rocket and balloon programmes and related research, pp 433–438

    Google Scholar 

  • Neef M, Fengler S, Hausmann N, Ecke M, Hennig A, Franz-Wachtel M, Hampp R (2013a) Cytosolic calcium, hydrogen peroxide, and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: a holistic view. In: 21st ESA symposium on European rocket and balloon programmes and related research (ESA SP-721)

    Google Scholar 

  • Neef M, Fengler S, Ecke M, Hausmann N, Hampp R (2013b) Joint european partial-g parabolic flight campaign calcium analysis in Arabidopsis thaliana cell cultures. In: Proceedings of ‘Life in space for life on Earth’ (ESA SP-706)

    Google Scholar 

  • Neef M, Ecke M, Hampp R (2015) Real-time recording of cytosolic calcium levels in Arabidopsis thaliana cell cultures during parabolic flights. Microgravity Sci Technol 27(4):305–312

    Article  CAS  Google Scholar 

  • Neef M, Denn T, Ecke M, Hampp R (2016) Intracellular calcium decreases upon hyper gravity-treatment of Arabidopsis thaliana cell cultures. Microgravity Sci Technol 28:331–336

    Article  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53(372):1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Obenland DM, Brown CS (1994) The influence of altered gravity on carbohydrate metabolism in excised wheat leaves. J Plant Physiol 144(6):696–699

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1(6):2650–2660

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13(1):179–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul A-L, Popp M, Gurley W, Guy C, Norwood K, Ferl R (2005) Arabidopsis gene expression patterns are altered during spaceflight. Adv Space Res 36(7):1175–1181

    Article  Google Scholar 

  • Paul AL, Manak MS, Mayfield JD, Reyes MF, Gurley WB, Ferl RJ (2011) Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana. Astrobiology 11(8):743–758

    Article  CAS  PubMed  Google Scholar 

  • Paul AL, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li JL, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ (2012) Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 12(1):40–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perbal G, Driss-Ecole D (2003) Mechanotransduction in gravisensing cells. Trends Plant Sci 8(10):498–504

    Article  CAS  PubMed  Google Scholar 

  • Perera IY, Heilmann I, Chang SC, Boss WF, Kaufman PB (2001) A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol 125(3):1499–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera IY, Hung CY, Brady S, Muday GK, Boss WF (2006) A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol 140(2):746–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrin RM, Young L-S, Narayana Murthy U, Harrison BR, Wang Y, Will JL, Masson PH (2005) Gravity signal transduction in primary roots. Ann Bot 96(5):737–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the Earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 129:786–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poovaiah BW, McFadden JJ, Reddy AS (1987) The role of calcium ions in gravity signal perception and transduction. Physiol Plant 71:401–407

    Article  CAS  PubMed  Google Scholar 

  • Poovaiah BW, Yang T, van Loon JJ (2002) Calcium/calmodulin-mediated gravitropic response in plants. J Gravit Physiol 9(1):P211–P214

    CAS  PubMed  Google Scholar 

  • Pyle T, Souret F, Correll M, Kiss J (2001) The effects of gravity and the spaceflight environment on the gene expression profile of Arabidopsis thaliana seedlings. Ph.D. thesis, Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA

    Google Scholar 

  • Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3(5):423–434

    Article  CAS  PubMed  Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28(2):123–133

    Article  CAS  PubMed  Google Scholar 

  • Roos W, Evers S, Hieke M, Tschope M, Schumann B (1998) Shifts of intracellular pH distribution as a part of the signal mechanism leading to the elicitation of benzophenanthridine alkaloids. Phytoalexin biosynthesis in cultured cells of eschscholtzia californica. Plant Physiol 118(2):349–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen E, Chen R, Masson PH (1999) Root gravitropism: a complex response to a simple stimulus? Trends Plant Sci 4(10):407–412

    Article  CAS  PubMed  Google Scholar 

  • Sack FD (1991) Plant gravity sensing. Int Rev Cytol 127:193–252

    Article  CAS  PubMed  Google Scholar 

  • Salmi M, Roux S (2008) Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. Planta 229(1):151–159

    Article  CAS  PubMed  Google Scholar 

  • Sarwat M, Ahmad P, Nabi G, Hu X (2013) Ca(2+) signals: the versatile decoders of environmental cues. Crit Rev Biotechnol 33(1):97–109

    Article  CAS  PubMed  Google Scholar 

  • Schütz W, Hausmann N, Krug K, Hampp R, Macek B (2011) Extending SILAC to proteomics of plant cell lines. Plant Cell 23(5):1701–1705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen-Miller J, Hinchman R, Gordon S (1968) Thresholds for georesponse to acceleration in gravity-compensated Avena seedlings. Plant Physiol 43(3):338–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers A (1991) Gravity sensing mechanisms in plant cells. Gravit Space Biol 4(2):43–50

    CAS  Google Scholar 

  • Sobick V, Sievers A (1978) Responses of roots to simulated weightlessness on the fast-rotating clinostat. Life Sci Space Res 17:285–290

    Google Scholar 

  • Soga K (2013) Resistance of plants to gravitational force. J Plant Res 126(5):589–596

    Article  CAS  PubMed  Google Scholar 

  • Soga K, Kotake T, Wakabayashi K, Kamisaka S, Hoson T (2008) Transient increase in the transcript levels of gamma-tubulin complex genes during reorientation of cortical microtubules by gravity in adzuki bean (Vigna angularis) epicotyls. J Plant Res 121(5):493–498

    Article  CAS  PubMed  Google Scholar 

  • Staves MP (1997) Cytoplasmic streaming and gravity sensing in Chara internodal cells. Planta 203(Suppl 1):S79–S84

    Article  CAS  PubMed  Google Scholar 

  • Steingraber M, Outlaw WH, Hampp R (1988) Subcellular compartmentation of fructose 2, 6-bisphosphate in oat mesophyll cells. Planta 175(2):204–208

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) Th.E R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4(5):447–456

    Article  CAS  PubMed  Google Scholar 

  • Stutte G, Monje O, Hatfield R, Paul A, Ferl R, Simone C (2006) Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta 224(5):1038–1049

    Article  CAS  PubMed  Google Scholar 

  • Sun L, van Nocker S (2010) Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis. BMC Plant Biol 10(1):152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319(5867):1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Gilroy S (2013) Gravitropism and mechanical signaling in plants. Am J Bot 100(1):111–125

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008) Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol 146(2):505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyota M, Ikeda N, Sawai-Toyota S, Kato T, Gilroy S, Tasaka M, Morita MT (2013) Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant J 76:648–660. https://doi.org/10.1111/tpj.12324

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2(2):79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Umeda M, Manabe Y, Uchimiya H (1997) Phosphorylation of the C2 subunit of the proteasome in rice (Oryza sativa L.). FEBS Lett 403(3):313–317

    Article  CAS  PubMed  Google Scholar 

  • Vasilenko A, Popova A (1996) Energetic metabolism response in algae and higher plant species from simulation experiments with the clinostat. Adv Space Res 17(6–7):103–106

    Article  CAS  PubMed  Google Scholar 

  • Walther I, Pippia P, Meloni MA, Turrini F, Mannu F, Cogoli A (1998) Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett 436(1):115–118

    Article  CAS  PubMed  Google Scholar 

  • Wan XS, Zhou Z, Kennedy AR (2003) Adaptation of the dichlorofluorescein assay for detection of radiation-induced oxidative stress in cultured cells. Radiat Res 160(6):622–630

    Article  CAS  PubMed  Google Scholar 

  • Wan XS, Zhou Z, Ware JH, Kennedy AR (2005) Standardization of a fluorometric assay for measuring oxidative stress in irradiated cells. Radiat Res 163(2):232–240

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zheng HQ, Sha W, Zeng R, Xia QC (2006) A proteomic approach to analysing responses of Arabidopsis thaliana callus cells to clinostat rotation. J Exp Bot 57(4):827–835

    Article  CAS  PubMed  Google Scholar 

  • Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19(12):4022–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka R, Soga K, Wakabayashi K, Takeba G, Hoson T (2003) Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls. Adv Space Res 31(10):2187–2193

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L, Xie J, Zheng H (2015) Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta 241(2):475–488

    Article  CAS  PubMed  Google Scholar 

  • Zupanska AK, Denison FC, Ferl RJ, Paul A-L (2013) Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Am J Bot 100(1):235–248

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanke, W., Kohn, F.P.M., Neef, M., Hampp, R. (2018). Interaction of Gravity with Cell Metabolism. In: Gravitational Biology II. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-00596-2_2

Download citation

Publish with us

Policies and ethics