Skip to main content

Mechanical Factors Affecting the Mobility of Membrane Proteins

  • Chapter
  • First Online:
Physics of Biological Membranes

Abstract

The mobility of membrane proteins controls many biological functions. The application of the model of Saffman and Delbrück to the diffusion of membrane proteins does not account for all the experimental measurements. These discrepancies have triggered a lot of studies on the role of the mechanical factors in the mobility. After a short review of the Saffman and Delbrück model and of some key experiments, we explore the various ways to incorporate the effects of the different mechanical factors. Our approach focuses on the coupling of the protein to the membrane, which is the central element in the modeling. We present a general, polaron-like model, its recent application to the mobility of a curvature sensitive protein, and its various extensions to other couplings that may be relevant in future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein A (1905) Ann Phys 322:549

    Article  Google Scholar 

  2. Perrin JB (1909) Ann Chim Phys 19:5

    Google Scholar 

  3. Saffman PG, Delbrück M (1975) Proc Natl Acad Sci USA 72(8):3111

    Article  CAS  Google Scholar 

  4. Hughes BD, Pailthorpe BA, White LR (1981) J Fluid Mech 110:349

    Article  CAS  Google Scholar 

  5. Guigas G, Weiss M (2008) Biophys J 95(3):L25

    Article  CAS  Google Scholar 

  6. Petrov EP, Schwille P (2008) Biophys J 94(5):L41

    Article  CAS  Google Scholar 

  7. Petrov EP, Petrosyan R, Schwille P (2012) Soft Matter 8:7552

    Article  CAS  Google Scholar 

  8. Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov NS, Genest M, Hodges RS, Urbach W (2006) Proc Natl Acad Sci USA 103:2098

    Article  CAS  Google Scholar 

  9. Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, Poolman B (2009) J Am Chem Soc 131(35):12650

    Article  CAS  Google Scholar 

  10. Weiß K, Neef A, Van Q, Kramer S, Gregor I, Enderlein J (2013) Biophys J 105(2):455

    Article  Google Scholar 

  11. Quemeneur F, Sigurdsson JK, Renner M, Atzberger PJ, Bassereau P, Lacoste D (2014) Proc Natl Acad Sci USA 111(14):5083

    Article  CAS  Google Scholar 

  12. Gambin Y, Reffay M, Sierecki E, Homblé F, Hodges RS, Gov NS, Taulier N, Urbach W (2010) J Phys Chem B 114(10):3559

    Article  CAS  Google Scholar 

  13. Domanov YA, Aimon S, Toombes GES, Renner M, Quemeneur F, Triller A, Turner MS, Bassereau P (2011) Proc Natl Acad Sci USA 108(31):12605

    Article  CAS  Google Scholar 

  14. Daniels DR, Turner MS (2007) Langmuir 23(12):6667

    Article  CAS  Google Scholar 

  15. Hormel TT, Kurihara SQ, Brennan MK, Wozniak MC, Parthasarathy R (2014) Phys Rev Lett 112:188101

    Article  Google Scholar 

  16. Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes GES, Bassereau P (2014) Dev Cell 28(2):212

    Article  CAS  Google Scholar 

  17. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Science 282(5397):2220

    Article  CAS  Google Scholar 

  18. Liu Z, Gandhi CS, Rees DC (2009) Nature 461(7260):120

    Article  CAS  Google Scholar 

  19. Camley BA, Brown FLH (2013) Soft Matter 9(19):4767

    Article  CAS  Google Scholar 

  20. Seki K, Ramachandran S, Komura S (2011) Phys Rev E 84:021905

    Article  Google Scholar 

  21. Stone HA, Ajdari A (1998) J Fluid Mech 369:151

    CAS  Google Scholar 

  22. Goulian M, Bruinsma R, Pincus P (1993) Europhys Lett 22(2):145

    Article  CAS  Google Scholar 

  23. Reynwar B, Deserno M (2008) Biointerphases 3:FA117

    Article  Google Scholar 

  24. Reister E, Seifert U (2005) Europhys Lett 71(5):859

    Article  CAS  Google Scholar 

  25. Reynwar BJ, Illya G, Harmandaris VA, Muller MM, Kremer K, Deserno M (2007) Nature 447(7143):461

    Article  CAS  Google Scholar 

  26. Naji A, Atzberger PJ, Brown FLH (2009) Phys Rev Lett 102(13):138102

    Article  Google Scholar 

  27. Andersen OS, Koeppe RE (2007) Annu Rev Biophys Biomol Struct 36(1):107

    Article  CAS  Google Scholar 

  28. Winterhalter M, Helfrich W (1987) Phys Rev A 36:5874

    Article  CAS  Google Scholar 

  29. Phillips R, Ursell T, Wiggins P, Sens P (2009) Nature 459(7245):379

    Article  CAS  Google Scholar 

  30. Reister-Gottfried E, Leitenberger SM, Seifert U (2007) Phys Rev E 75(1):011908

    Article  Google Scholar 

  31. Naji A, Levine AJ, Pincus PA (2007) Biophys J 93(11):L49–L51

    Article  CAS  Google Scholar 

  32. Landau LD (1933) Phys Z Sowjetunion 3:644

    Google Scholar 

  33. Démery V, Dean DS (2010) Phys Rev Lett 104(8):080601

    Article  Google Scholar 

  34. Démery V, Dean DS (2010) Eur Phys J E 32:377

    Article  Google Scholar 

  35. Chaikin PM, Lubensky TC (1995) Principles of condensed matter physics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  36. Dean DS, Démery V (2011) J Phys Condens Matter 23(23):234114

    Article  Google Scholar 

  37. Démery V, Dean DS (2011) Phys Rev E 84(1):011148

    Article  Google Scholar 

  38. Leitenberger SM, Reister-Gottfried E, Seifert U (2008) Langmuir 24:1254

    Article  CAS  Google Scholar 

  39. Reister-Gottfried E, Leitenberger SM, Seifert U (2010) Phys Rev E 81:031903

    Article  Google Scholar 

  40. Sigurdsson JK, Brown FL, Atzberger PJ (2013) J Comput Phys 252:65

    Article  CAS  Google Scholar 

  41. Camley B, Brown F (2012) Phys Rev E 85(6):061921

    Article  Google Scholar 

  42. Gruner SM (1985) Proc Natl Acad Sci USA 82(11):3665

    Article  CAS  Google Scholar 

  43. Mouritsen OG, Bloom M (1993) Annu Rev Biophys Biomol Struct 22(1):145. PMID: 8347987

    Article  CAS  Google Scholar 

  44. Veatch SL, Keller SL (2003) Biophys J 85(5):3074

    Article  CAS  Google Scholar 

  45. Veatch SL, Soubias O, Keller SL, Gawrisch K (2007) Proc Natl Acad Sci USA 104(45):17650

    Article  CAS  Google Scholar 

  46. Machta BB, Veatch SL, Sethna JP (2012) Phys Rev Lett 109(13):138101

    Article  Google Scholar 

  47. Taniguchi T (1996) Phys Rev Lett 76(23):4444

    Article  CAS  Google Scholar 

  48. Fujitani Y (2013) J Phys Soc Jpn 82(12):124601

    Article  Google Scholar 

  49. Yanagisawa M, Imai M, Masui T, Komura S, Ohta T (2007) Biophys J 92(1):115

    Article  CAS  Google Scholar 

  50. Bartolo D, Long D, Fournier JB (2000) Europhys Lett 49(6):729

    Article  CAS  Google Scholar 

  51. de Gennes PG, Prost J (1993) The physics of liquid crystals. Oxford University Press, Oxford

    Google Scholar 

  52. Katira S, Mandadapu KK, Vaikuntanathan S, Smit B, Chandler D (2016) eLife 5:e13150

    Article  Google Scholar 

  53. Bitbol AF, Dommersnes PG, Fournier JB (2010) Phys Rev E 81(5):050903

    Article  Google Scholar 

  54. Bitbol AF, Fournier JB (2011) Phys Rev E 83(6):061107

    Article  Google Scholar 

  55. Capovilla R, Guven J (2002) J Phys A Math Gen 35:6233

    Article  CAS  Google Scholar 

  56. Démery V, Dean DS (2011) Phys Rev E 84(1):010103

    Article  Google Scholar 

  57. Démery V (2013) Phys Rev E 87(5):052105

    Article  Google Scholar 

  58. Morris RG, Turner MS (2015) Phys Rev Lett 115:198101

    Article  Google Scholar 

  59. Daniels DR (2016) Eur Phys J E 39(10):96

    Article  CAS  Google Scholar 

  60. Morris RG (2017) Biophys J 112(1):3

    Article  CAS  Google Scholar 

  61. Lacoste D, Bassereau P (2013). In: Pabst G (ed) Liposomes, lipid bilayers and model membranes: from basic research to applications. Taylor and Francis, London, pp 271–287

    Google Scholar 

  62. Bouvrais H, Cornelius F, Ipsen JH, Mouritsen O (2012) Proc Natl Acad Sci USA 109(45):18442

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank P. Quemeneur, J. K. Sigurdsson, M. Renner, P. J. Atzberger, and P. Bassereau for a previous collaboration, which motivated this chapter. In addition, we would like to acknowledge stimulating discussions with W. Urbach and M. S. Turner. D L would also like to thank Labex CelTisPhysBio (N ANR-10-LBX-0038) part of IDEX PSL (NANR-10-IDEX-0001-02 PSL) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lacoste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Démery, V., Lacoste, D. (2018). Mechanical Factors Affecting the Mobility of Membrane Proteins. In: Bassereau, P., Sens, P. (eds) Physics of Biological Membranes. Springer, Cham. https://doi.org/10.1007/978-3-030-00630-3_8

Download citation

Publish with us

Policies and ethics