Skip to main content

Boundary Layers in a Curved Domain in \(\mathbb{R}^{d}\), d = 2, 3

  • Chapter
  • First Online:
Singular Perturbations and Boundary Layers

Part of the book series: Applied Mathematical Sciences ((AMS,volume 200))

  • 944 Accesses

Abstract

In this chapter, we present some recent progresses, which are based on [GJT16], about the boundary layer analysis in a domain enclosed by a curved boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In space dimension 3 (and 2), the Laplacian (Laplace-Beltrami operator) of a vector field \(\mathbf{v}\) is defined by the identity \(\varDelta \mathbf{v} = \nabla (\text{div}\,\mathbf{v}) -\text{curl}(\text{curl}\,\mathbf{v})\); see, e.g., [Cia05, Kli78, Bat99]. We know that other definitions of the Laplacian of a vector, which possess different properties, are used in different contexts; see, e.g., [Cia05, Kli78].

  2. 2.

    Here \({\boldsymbol \delta }_{\varGamma }\) is used to denote the delta measure on Γ and it should not be confused with the (“small”) number δ used at other places in the text.

  3. 3.

    Here again \({\boldsymbol \delta }_{\varGamma }\) denotes the delta measure supported on the boundary Γ and is not related to the “small” coefficient δ.

References

  1. G. K. Batchelor. An introduction to fluid dynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge, paperback edition, 1999.

    MATH  Google Scholar 

  2. John Rozier Cannon. The one-dimensional heat equation, volume 23 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Company Advanced Book Program, Reading, MA, 1984. With a foreword by Felix E. Browder.

    Google Scholar 

  3. Philippe G. Ciarlet. An introduction to differential geometry with application to elasticity. J. Elasticity, 78/79(1–3):iv+215, 2005. With a foreword by Roger Fosdick.

    Google Scholar 

  4. W. Eckhaus and E. M. de Jager. Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type. Arch. Rational Mech. Anal., 23:26–86, 1966.

    Article  MathSciNet  Google Scholar 

  5. Wiktor Eckhaus. Boundary layers in linear elliptic singular perturbation problems. SIAM Rev., 14:225–270, 1972.

    Article  MathSciNet  Google Scholar 

  6. Gung-Min Gie. Singular perturbation problems in a general smooth domain. Asymptot. Anal., 62(3–4):227–249, 2009.

    MathSciNet  MATH  Google Scholar 

  7. Gung-Min Gie, Makram Hamouda, and Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Netw. Heterog. Media, 7(4):741–766, 2012.

    Article  MathSciNet  Google Scholar 

  8. Gung-Min Gie, Makram Hamouda, and Roger Temam. Boundary layers in smooth curvilinear domains: parabolic problems. Discrete Contin. Dyn. Syst., 26(4):1213–1240, 2010.

    MathSciNet  MATH  Google Scholar 

  9. Gung-Min Gie, Chang-Yeol Jung, and Roger Temam. Recent progresses in boundary layer theory. Discrete Contin. Dyn. Syst., 36(5):2521–2583, 2016.

    MathSciNet  MATH  Google Scholar 

  10. Gung-Min Gie and James P. Kelliher. Boundary layer analysis of the Navier-Stokes equations with generalized Navier boundary conditions. J. Differential Equations, 253(6):1862–1892, 2012.

    Article  MathSciNet  Google Scholar 

  11. Gung-Min Gie, James P. Kelliher, M. C. Lopes Filho, A. L. Mazzucato, and H. J. Nussenzveig Lopes. Vanishing viscosity limit of some symmetric flows. Preprint, 2018.

    Google Scholar 

  12. Chang-Yeol Jung, Eunhee Park, and Roger Temam. Boundary layer analysis of nonlinear reaction-diffusion equations in a smooth domain. Adv. Nonlinear Anal., 6(3):277–300, 2017

    MathSciNet  MATH  Google Scholar 

  13. Chang-Yeol Jung, Eunhee Park, and Roger Temam. Boundary layer analysis of nonlinear reaction-diffusion equations in a polygonal domain. Nonlinear Anal., 148:161–202, 2017.

    Article  MathSciNet  Google Scholar 

  14. James P. Kelliher. Vanishing viscosity and the accumulation of vorticity on the boundary. Commun. Math. Sci., 6(4):869–880, 2008.

    Article  MathSciNet  Google Scholar 

  15. Wilhelm Klingenberg. A course in differential geometry. Springer-Verlag, New York-Heidelberg, 1978. Translated from the German by David Hoffman, Graduate Texts in Mathematics, Vol. 51.

    Google Scholar 

  16. P. A. Lagerstrom. Matched asymptotic expansions, volume 76 of Applied Mathematical Sciences. Springer-Verlag, New York, 1988. Ideas and techniques.

    Google Scholar 

  17. J.-L. Lions. Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Lecture Notes in Mathematics, Vol. 323. Springer-Verlag, Berlin-New York, 1973.

    Book  Google Scholar 

  18. M. C. Lopes Filho, A. L. Mazzucato, H. J. Nussenzveig Lopes, and Michael Taylor. Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows. Bull. Braz. Math. Soc. (N.S.), 39(4):471–513, 2008.

    Article  MathSciNet  Google Scholar 

  19. Jeffrey B. Rauch and Frank J. Massey III. Differentiability of solutions to hyperbolic initial-boundary value problems. Trans. Amer. Math. Soc., 189 (1974), 303–318.

    MathSciNet  MATH  Google Scholar 

  20. Stephen Smale. Smooth solutions of the heat and wave equations. Comment. Math. Helv., 55(1):1–12, 1980.

    Article  MathSciNet  Google Scholar 

  21. R. Temam. Behavior at time t = 0 of the solutions of semi-linear evolution equations. Journal of Differential Equations 43 (1982), No. 1, pp. 73–92.

    Article  MathSciNet  Google Scholar 

  22. R. Temam. Suitable initial conditions. J. Comput. Phys. 218 (2006), no. 2, 443–450.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gie, GM., Hamouda, M., Jung, CY., Temam, R.M. (2018). Boundary Layers in a Curved Domain in \(\mathbb{R}^{d}\), d = 2, 3. In: Singular Perturbations and Boundary Layers. Applied Mathematical Sciences, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-00638-9_3

Download citation

Publish with us

Policies and ethics