Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 549 Accesses

Abstract

In this thesis we have studied equilibrium and nonequilibrium aspects of continuous phase transitions in distinct systems. We have made special emphasis on their nonequilibrium features, a much less understood topic than their static counterparts, aiming to elucidate questions such as to what extent the well-established universal static properties apply to the dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Puebla, R. Nigmatullin, T.E. Mehlstäubler, M.B. Plenio, Fokker-Planck formalism approach to Kibble-Zurek scaling laws and nonequilibrium dynamics. Phys. Rev. B 95, 134104 (2017a). https://doi.org/10.1103/PhysRevB.95.134104

    Article  ADS  Google Scholar 

  2. M.-J. Hwang, R. Puebla, M.B. Plenio, Quantum phase transition and universal dynamics in the Rabi model. Phys. Rev. Lett. 115, 180404 (2015). https://doi.org/10.1103/PhysRevLett.115.180404

    Article  ADS  Google Scholar 

  3. R. Puebla, M.-J. Hwang, M.B. Plenio, Excited-state quantum phase transition in the Rabi model. Phys. Rev. A 94, 023835 (2016a). https://doi.org/10.1103/PhysRevA.94.023835

    Article  ADS  Google Scholar 

  4. R. Puebla, J. Casanova, M.B. Plenio, A robust scheme for the implementation of the quantum Rabi model in trapped ions. New J. Phys. 18, 113039 (2016b), http://stacks.iop.org/1367-2630/18/i=11/a=113039

    Article  ADS  Google Scholar 

  5. R. Puebla, M.-J. Hwang, J. Casanova, M.B. Plenio, Probing the dynamics of a superradiant quantum phase transition with a single trapped ion. Phys. Rev. Lett. 118, 073001 (2017b). https://doi.org/10.1103/PhysRevLett.118.073001

    Article  ADS  Google Scholar 

  6. L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. (Butterworth-Heinemann, Oxford, 1980)

    MATH  Google Scholar 

  7. D.H.E. Dubin, T.M. O’Neil, Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states). Rev. Mod. Phys. 71, 87 (1999). https://doi.org/10.1103/RevModPhys.71.87

    Article  ADS  Google Scholar 

  8. R.C. Thompson, Ion Coulomb crystals. Cont. Phys. 56, 63 (2015). https://doi.org/10.1080/00107514.2014.989715

    Article  ADS  Google Scholar 

  9. P. Laguna, W.H. Zurek, Density of kinks after a quench: when symmetry breaks, how big are the pieces? Phys. Rev. Lett. 78, 2519 (1997). https://doi.org/10.1103/PhysRevLett.78.2519

    Article  ADS  Google Scholar 

  10. P. Laguna, W.H. Zurek, Critical dynamics of symmetry breaking: quenches, dissipation, and cosmology. Phys. Rev. D 58, 085021 (1998). https://doi.org/10.1103/PhysRevD.58.085021

    Article  ADS  Google Scholar 

  11. E. Moro, G. Lythe, Dynamics of defect formation. Phys. Rev. E 59, R1303(R) (1999). https://doi.org/10.1103/PhysRevE.59.R1303

    Article  ADS  Google Scholar 

  12. G. De Chiara, A. del Campo, G. Morigi, M.B. Plenio, A. Retzker, Spontaneous nucleation of structural defects in inhomogeneous ion chains. New J. Phys. 12, 115003 (2010), http://stacks.iop.org/1367-2630/12/i=11/a=115003

    Article  ADS  Google Scholar 

  13. A. del Campo, A. Retzker, M.B. Plenio, The inhomogeneous Kibble-Zurek mechanism: vortex nucleation during Bose-Einstein condensation. New J. Phys. 13, 083022 (2011), http://stacks.iop.org/1367-2630/13/i=8/a=083022

  14. A. del Campo, G. De Chiara, G. Morigi, M.B. Plenio, A. Retzker, Structural defects in ion chains by quenching the external potential: the inhomogeneous Kibble-Zurek mechanism. Phys. Rev. Lett. 105, 075701 (2010). https://doi.org/10.1103/PhysRevLett.105.075701

    Article  ADS  Google Scholar 

  15. R. Nigmatullin, A. del Campo, G. De Chiara, G. Morigi, M.B. Plenio, A. Retzker, Formation of helical ion chains. Phys. Rev. B 93, 014106 (2016). https://doi.org/10.1103/PhysRevB.93.014106

    Article  ADS  Google Scholar 

  16. K. Pyka, J. Keller, H.L. Partner, R. Nigmatullin, T. Burgermeister, D.M. Meier, K. Kuhlmann, A. Retzker, M.B. Plenio, W.H. Zurek, A. del Campo, T.E. Mehlstäubler, Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals. Nat. Commun. 4, 2291 (2013). https://doi.org/10.1038/ncomms3291

    Article  Google Scholar 

  17. S. Ulm, J. Roßnagel, G. Jacob, C. Degünther, S.T. Dawkins, U.G. Poschinger, R. Nigmatullin, A. Retzker, M.B. Plenio, F. Schmidt-Kaler, K. Singer, Observation of the Kibble–Zurek scaling law for defect formation in ion crystals, Nat. Commun. 4, 2290 (2013). https://doi.org/10.1038/ncomms3290

  18. C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997). https://doi.org/10.1103/PhysRevLett.78.2690

    Article  ADS  Google Scholar 

  19. G.E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999). https://doi.org/10.1103/PhysRevE.60.2721

    Article  ADS  Google Scholar 

  20. T.M. Hoang, H.M. Bharath, M.J. Boguslawski, M. Anquez, B.A. Robbins, M.S. Chapman, Adiabatic quenches and characterization of amplitude excitations in a continuous quantum phase transition. Proc. Natl. Acad. Sci. 113, 9475 (2016). https://doi.org/10.1073/pnas.1600267113

    Article  ADS  Google Scholar 

  21. F. Cosco, M. Borrelli, P. Silvi, S. Maniscalco, G. De Chiara, Nonequilibrium quantum thermodynamics in Coulomb crystals. Phys. Rev. A 95, 063615 (2017). https://doi.org/10.1103/PhysRevA.95.063615

    Article  ADS  Google Scholar 

  22. S. Deffner, Kibble-Zurek scaling of the irreversible entropy production. Phys. Rev. E 96, 052125 (2017). https://doi.org/10.1103/PhysRevE.96.052125

    Article  ADS  Google Scholar 

  23. L.P. Kadanoff, More is the same; phase transitions and mean field theories. J. Stat. Phys. 137, 777 (2009). https://doi.org/10.1007/s10955-009-9814-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997)

    Google Scholar 

  25. A.P. Hines, C.M. Dawson, R.H. McKenzie, G.J. Milburn, Entanglement and bifurcations in Jahn-Teller models. Phys. Rev. A 70, 022303 (2004). https://doi.org/10.1103/PhysRevA.70.022303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. G. Levine, V.N. Muthukumar, Entanglement of a qubit with a single oscillator mode. Phys. Rev. B 69, 113203 (2004). https://doi.org/10.1103/PhysRevB.69.113203

    Article  ADS  Google Scholar 

  27. S. Ashhab, F. Nori, Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81, 042311 (2010). https://doi.org/10.1103/PhysRevA.81.042311

    Article  ADS  Google Scholar 

  28. L. Bakemeier, A. Alvermann, H. Fehske, Quantum phase transition in the Dicke model with critical and noncritical entanglement. Phys. Rev. A 85, 043821 (2012). https://doi.org/10.1103/PhysRevA.85.043821

    Article  ADS  Google Scholar 

  29. S. Ashhab, Superradiance transition in a system with a single qubit and a single oscillator. Phys. Rev. A 87, 013826 (2013). https://doi.org/10.1103/PhysRevA.87.013826

    Article  ADS  Google Scholar 

  30. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954). https://doi.org/10.1103/PhysRev.93.99

    Article  ADS  MATH  Google Scholar 

  31. H. Lipkin, N. Meshkov, A. Glick, Validity of many-body approximation methods for a solvable model. Nucl. Phys. 62, 188 (1965). https://doi.org/10.1016/0029-5582(65)90862-X

    Article  Google Scholar 

  32. C. Emary, T. Brandes, Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model. Phys. Rev. Lett 90, 044101 (2003a). https://doi.org/10.1103/PhysRevLett.90.044101

    Article  ADS  Google Scholar 

  33. C. Emary, T. Brandes, Chaos and the quantum phase transition in the Dicke model. Phys. Rev. E 67, 66203 (2003b). https://doi.org/10.1103/PhysRevE.67.066203

    Article  ADS  MathSciNet  Google Scholar 

  34. N. Lambert, C. Emary, T. Brandes, Entanglement and the phase transition in single-mode superradiance. Phys. Rev. Lett. 92, 073602 (2004). https://doi.org/10.1103/PhysRevLett.92.073602

    Article  ADS  Google Scholar 

  35. N. Lambert, C. Emary, T. Brandes, Entanglement and entropy in a spin-boson quantum phase transition. Phys. Rev. A 71, 053804 (2005). https://doi.org/10.1103/PhysRevA.71.053804

    Article  ADS  Google Scholar 

  36. P. Ribeiro, J. Vidal, R. Mosseri, Thermodynamical limit of the Lipkin-Meshkov-Glick model. Phys. Rev. Lett. 99, 050402 (2007). https://doi.org/10.1103/PhysRevLett.99.050402

    Article  ADS  Google Scholar 

  37. P. Ribeiro, J. Vidal, R. Mosseri, Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections. Phys. Rev. E 78, 021106 (2008). https://doi.org/10.1103/PhysRevE.78.021106

    Article  ADS  Google Scholar 

  38. P. Cejnar, M. Macek, S. Heinze, J. Jolie, J. Dobes, Monodromy and excited-state quantum phase transitions in integrable systems: collective vibrations of nuclei. J. Phys. A Math. Theor. 39, L515 (2006), http://stacks.iop.org/0305-4470/39/i=31/a=L01

    Article  ADS  MathSciNet  Google Scholar 

  39. P. Cejnar, P. Stránský, Impact of quantum phase transitions on excited-level dynamics. Phys. Rev. E 78, 031130 (2008). https://doi.org/10.1103/PhysRevE.78.031130

    Article  ADS  Google Scholar 

  40. M. Caprio, P. Cejnar, F. Iachello, Excited state quantum phase transitions in many-body systems. Ann. Phys. (N.Y.) 323, 1106 (2008). https://doi.org/10.1016/j.aop.2007.06.011

    Article  ADS  Google Scholar 

  41. T. Caneva, R. Fazio, G.E. Santoro, Adiabatic quantum dynamics of the Lipkin-Meshkov-Glick model. Phys. Rev. B 78, 104426 (2008). https://doi.org/10.1103/PhysRevB.78.104426

    Article  ADS  Google Scholar 

  42. O.L. Acevedo, L. Quiroga, F.J. Rodríguez, N.F. Johnson, New dynamical scaling universality for quantum networks across adiabatic quantum phase transitions. Phys. Rev. Lett. 112, 030403 (2014). https://doi.org/10.1103/PhysRevLett.112.030403

    Article  ADS  Google Scholar 

  43. S. van Frank, M. Bonneau, J. Schmiedmayer, S. Hild, C. Gross, M. Cheneau, I. Bloch, T. Pichler, A. Negretti, T. Calarco, S. Montangero, Optimal control of complex atomic quantum systems. Sci. Rep. 6, 34187 (2016). https://doi.org/10.1038/srep34187

  44. R. Barankov, A. Polkovnikov, Optimal nonlinear passage through a quantum critical point. Phys. Rev. Lett. 101, 076801 (2008). https://doi.org/10.1103/PhysRevLett.101.076801

    Article  ADS  Google Scholar 

  45. E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, J.G. Muga, in Advances In Atomic, Molecular, and Optical Physics, vol. 62, ed. by E. Arimondo, P.R. Berman, C.C. Lin (Academic Press, 2013), pp. 117–169. https://doi.org/10.1016/B978-0-12-408090-4.00002-5

    Chapter  Google Scholar 

  46. V.M. Bastidas, C. Emary, B. Regler, T. Brandes, Nonequilibrium quantum phase transitions in the Dicke model. Phys. Rev. Lett. 108, 043003 (2012). https://doi.org/10.1103/PhysRevLett.108.043003

    Article  ADS  Google Scholar 

  47. M.-J. Hwang, P. Rabl, M.B. Plenio, Dissipative phase transition in the open quantum Rabi model. Phys. Rev. A 97, 013825 (2018). https://doi.org/10.1103/PhysRevA.97.013825

    Article  ADS  Google Scholar 

  48. M.-J. Hwang, M.B. Plenio, Quantum phase transition in the finite Jaynes-Cummings lattice systems. Phys. Rev. Lett. 117, 123602 (2016). https://doi.org/10.1103/PhysRevLett.117.123602

    Article  ADS  Google Scholar 

  49. M. Liu, S. Chesi, Z.-J. Ying, X. Chen, H.-G. Luo, H.-Q. Lin, Universal scaling and critical exponents of the anisotropic quantum Rabi model. Phys. Rev. Lett. 119, 220601 (2017). https://doi.org/10.1103/PhysRevLett.119.220601

    Article  ADS  Google Scholar 

  50. D. Nagy, P. Domokos, Nonequilibrium quantum criticality and non-Markovian environment: critical exponent of a quantum phase transition. Phys. Rev. Lett. 115, 043601 (2015). https://doi.org/10.1103/PhysRevLett.115.043601

    Article  ADS  Google Scholar 

  51. D. Nagy, P. Domokos, Critical exponent of quantum phase transitions driven by colored noise. Phys. Rev. A 94, 063862 (2016). https://doi.org/10.1103/PhysRevA.94.063862

    Article  ADS  Google Scholar 

  52. D. Patanè, A. Silva, L. Amico, R. Fazio, G.E. Santoro, Adiabatic dynamics in open quantum critical many-body systems. Phys. Rev. Lett. 101, 175701 (2008). https://doi.org/10.1103/PhysRevLett.101.175701

    Article  ADS  Google Scholar 

  53. D. Patanè, L. Amico, A. Silva, R. Fazio, G.E. Santoro, Adiabatic dynamics of a quantum critical system coupled to an environment: scaling and kinetic equation approaches. Phys. Rev. B 80, 024302 (2009). https://doi.org/10.1103/PhysRevB.80.024302

  54. P. Nalbach, Adiabatic-Markovian bath dynamics at avoided crossings. Phys. Rev. A 90, 042112 (2014). https://doi.org/10.1103/PhysRevA.90.042112

    Article  ADS  Google Scholar 

  55. P. Nalbach, S. Vishveshwara, A.A. Clerk, Quantum Kibble-Zurek physics in the presence of spatially correlated dissipation. Phys. Rev. B 92, 014306 (2015). https://doi.org/10.1103/PhysRevB.92.014306

    Article  ADS  Google Scholar 

  56. N.K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A. Bruno, F. Luthi, D.J. Thoen, A. Endo, L. DiCarlo, Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling. Nat. Comm. 8, 1715 (2017). https://doi.org/10.1038/s41467-017-01061-x

    Article  ADS  Google Scholar 

  57. P. Schneeweis, A. Dareau, C. Sayrin, Cold-atom based implementation of the quantum Rabi model (2017). arXiv:1706.07781

  58. M. Abdi, M.-J. Hwang, M. Aghtar, M.B. Plenio, Spin-mechanical scheme with color centers in hexagonal boron nitride membranes. Phys. Rev. Lett. 119, 233602 (2017). https://doi.org/10.1103/PhysRevLett.119.233602

    Article  ADS  Google Scholar 

  59. B. Damski, The simplest quantum model supporting the Kibble-Zurek mechanism of topological defect production: Landau-Zener transitions from a new perspective. Phys. Rev. Lett. 95, 035701 (2005). https://doi.org/10.1103/PhysRevLett.95.035701

    Article  ADS  Google Scholar 

  60. W.H. Zurek, U. Dorner, P. Zoller, Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005). https://doi.org/10.1103/PhysRevLett.95.105701

    Article  ADS  Google Scholar 

  61. J. Dziarmaga, Dynamics of a quantum phase transition: exact solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701 (2005). https://doi.org/10.1103/PhysRevLett.95.245701

    Article  ADS  Google Scholar 

  62. A. Polkovnikov, Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B 72, 161201 (2005). https://doi.org/10.1103/PhysRevB.72.161201

    Article  ADS  Google Scholar 

  63. L.W. Clark, L. Feng, C. Chin, Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition. Science 354, 606 (2016). https://doi.org/10.1126/science.aaf9657

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. M. Anquez, B.A. Robbins, H.M. Bharath, M. Boguslawski, T.M. Hoang, M.S. Chapman, Quantum Kibble-Zurek mechanism in a spin-1 Bose-Einstein condensate. Phys. Rev. Lett. 116, 155301 (2016). https://doi.org/10.1103/PhysRevLett.116.155301

    Article  ADS  Google Scholar 

  65. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003). https://doi.org/10.1103/RevModPhys.75.281

    Article  ADS  Google Scholar 

  66. A. Friedenauer, H. Schmitz, J.T. Glueckert, D. Porras, T. Schaetz, Simulating a quantum magnet with trapped ions. Nat. Phys. 4, 757 (2008). https://doi.org/10.1038/nphys1032

    Article  Google Scholar 

  67. K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E.E. Edwards, J.K. Freericks, G.-D. Lin, L.-M. Duan, C. Monroe, Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590 (2010). https://doi.org/10.1038/nature09071

    Article  ADS  Google Scholar 

  68. R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.-C. Joseph Wang, J.K. Freericks, C. Monroe, Onset of a quantum phase transition with a trapped ion quantum simulator. Nat. Commun. 2, 377 (2011). https://doi.org/10.1038/ncomms1374

    Article  Google Scholar 

  69. R. Islam, C. Senko, W.C. Campbell, S. Korenblit, J. Smith, A. Lee, E.E. Edwards, C.-C.J. Wang, J.K. Freericks, C. Monroe, Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340, 583 (2013). https://doi.org/10.1126/science.1232296

    Article  ADS  Google Scholar 

  70. J. Zhang, P.W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A.C. Potter, A. Vishwanath, N.Y. Yao, C. Monroe, Observation of a discrete time crystal. Nature 543, 217 (2017a). https://doi.org/10.1038/nature21413

    Article  ADS  Google Scholar 

  71. P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C. Hempel, B.P. Lanyon, M. Heyl, R. Blatt, C.F. Roos, Direct observation of dynamical quantum phase transitions in an interacting many-body system. Phys. Rev. Lett. 119, 080501 (2017). https://doi.org/10.1103/PhysRevLett.119.080501

    Article  ADS  Google Scholar 

  72. J. Zhang, G. Pagano, P.W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A.V. Gorshkov, Z.-X. Gong, C. Monroe, Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601 (2017b). https://doi.org/10.1038/nature24654

    Article  ADS  Google Scholar 

  73. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states. Ann. Phys. (N.Y.) 326, 96 (2011). https://doi.org/10.1016/j.aop.2010.09.012

    Article  ADS  MathSciNet  Google Scholar 

  74. D. Jaschke, K. Maeda, J.D. Whalen, M.L. Wall, L.D. Carr, Critical phenomena and Kibble-Zurek scaling in the long-range quantum Ising chain. New J. Phys. 19, 033032 (2017), http://stacks.iop.org/1367-2630/19/i=3/a=033032

    Article  ADS  Google Scholar 

  75. T. Koffel, M. Lewenstein, L. Tagliacozzo, Entanglement entropy for the long-range Ising chain in a transverse field. Phys. Rev. Lett. 109, 267203 (2012). https://doi.org/10.1103/PhysRevLett.109.267203

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Puebla .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puebla, R. (2018). Concluding Remarks and Outlook. In: Equilibrium and Nonequilibrium Aspects of Phase Transitions in Quantum Physics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00653-2_7

Download citation

Publish with us

Policies and ethics