Skip to main content

Recombinant Coagulation Factors and Thrombolytic Agents

  • Chapter
  • First Online:
Pharmaceutical Biotechnology

Abstract

Bleeding disorders and thrombosis are defects of the hemostatic system that often require therapeutic intervention with human plasma proteins. Several thereof, including coagulation factor VIII and tissue-type plasminogen activator, are low abundance proteins, which limits their availability for pharmaceutical production from human blood. In the early 1980s, the advent of biotechnology provided the perspective of unlimited access to such trace proteins, and plasminogen activator and factor VIII were among the first recombinant protein therapeutics that became available. The complexity of the hemostatic proteins have posed specific challenges with respect to post-translational modification and processing, and this has long been limiting their biotechnological development. More than a decade after the first recombinant coagulation factors, a few more became available, including factor IX and activated factor VII. The first generation of these recombinant products was designed to provide exact copies of their natural, human counterparts. Subsequent generations included engineered variants, with deletions or substitutions in order to improve expression, product safety or biological activity. During the last decade, the number of recombinant products has been rapidly increasing. The latest generation comprises more drastic modifications, including fusion proteins designed to improve pharmacokinetics. These novel agents pose new challenges in terms of dosage and patient monitoring. This makes protocols for individualized treatment complex, and more importantly, product-specific. The present chapter provides an overview of recombinant coagulation factors and thrombolytic agents that are currently licensed, with particular reference to the benefits and challenges using engineered biopharmaceuticals in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson LO, Forsman N, Huang K, Larsen K, Lundin A, Pavlu B, Sandberg H, Sewerin K, Smart J (1986) Isolation and characterization of human factor VIII: molecular forms in commercial factor VIII concentrate, cryoprecipitate and plasma. Proc Natl Acad Sci U S A 83:2979–2983

    Article  CAS  Google Scholar 

  • Björkman S, Berntorp E (2001) Pharmacokinetics of coagulation factors: clinical relevance for patients with haemophilia. Clin Pharmacokinet 40:815–832

    Article  Google Scholar 

  • Cafuir LA, Kempton CL (2017) Current and emerging factor VIII replacement products for hemophilia A. Ther Adv Hematol 8:303–313

    Article  CAS  Google Scholar 

  • Castaman G, Linari S (2017) Diagnosis and treatment of von Willebrand disease and rare bleeding disorders. J Clin Med 6:E45

    Article  Google Scholar 

  • Choo KH, Gould KG, Rees DL, Brownlee GG (1982) Molecular cloning of the gene for human anti-haemophilic factor IX. Nature 299:178–180

    Article  CAS  Google Scholar 

  • Collen D, Lijnen HR (2004) Tissue-type plasminogen activator: a historical perspective and personal account. J Thromb Haemost 2:541–546

    Article  CAS  Google Scholar 

  • Collen D, Lijnen HR (2005) Thrombolytic agents. Thromb Haemost 93:627–630

    Article  CAS  Google Scholar 

  • Collins R, Peto R, Baigent C, Sleight P (1997) Aspirin, heparin, and fibrinolytic therapy in suspected acute myocardial infarction. N Engl J Med 336:847–860

    Article  CAS  Google Scholar 

  • Davie EW, Ratnoff OD (1964) Waterfall sequence for intrinsic blood clotting. Science 145:1310–1312

    Article  CAS  Google Scholar 

  • Dietrich B, Schiviz A, Hoellriegl W, Horling F, Benamara K, Rottensteiner H, Turecek PL, Schwarz HP, Scheiflinger F, Muchitsch EM (2013) Preclinical safety and efficacy of a new recombinant FIX drug product for treatment of hemophilia B. Int J Hematol 98:525–532

    Article  CAS  Google Scholar 

  • Edmunds T, Van Patten SM, Pollock J, Hanson E, Bernasconi R, Higgins E, Manvalan P, Ziomek C, Meade H, McPherson JM, Cole ES (1998) Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin. Blood 91:4561–4571

    CAS  PubMed  Google Scholar 

  • Fay PJ (2004) Activation of factor VIII and mechanisms of cofactor action. Blood Rev 18:1–15

    Article  Google Scholar 

  • Franchini M, Mannucci PM (2013) Hemophilia A in the third millennium. Blood Rev 27:179–184

    Article  CAS  Google Scholar 

  • Franchini M, Mannucci PM (2016) Von Willebrand factor (Vonvendi®): the first recombinant product licensed for the treatment of von Willebrand disease. Expert Rev Hematol 9:825–830

    Article  CAS  Google Scholar 

  • Furie B, Furie BC (1988) The molecular basis of blood coagulation. Cell 53:505–518

    Article  CAS  Google Scholar 

  • Gill JC, Castaman G, Windyga J, Kouides P, Ragni M, Leebeek FWG, Obermann-Slupetzky O, Chapman M, Fritsch S, Pavlova BG, Presch I, Ewenstein B (2015) Hemostatic efficacy, safety, and pharmacokinetics of a recombinant von Willebrand factor in severe von Willebrand disease. Blood 126:2038–2046

    Article  CAS  Google Scholar 

  • Guillermin A, Yan DJ, Perrier A, Marti C (2016) Safety and efficacy of tenecteplase versus alteplase in acute coronary syndrome: a systematic review and meta-analysis of randomized trials. Arch Med Sci 12:1181–1187

    Article  CAS  Google Scholar 

  • Harrison S, Adamson S, Bonam D, Brodeur S, Charlebois T, Clancy B, Costigan R, Drapeau D, Hamilton M, Hanley K, Kelley B, Knight A, Leonard M, McCarthy M, Oakes P, Sterl K, Switzer M, Walsh R, Foster W (1998) The manufacturing process for recombinant factor IX. Sem Hematol 35(Suppl 2):4–10

    CAS  Google Scholar 

  • Hedner U (2006) Mechanism of action, development and clinical experience of recombinant FVIIa. J Biotechnol 124:747–757

    Article  CAS  Google Scholar 

  • Hedner U, Ezban M (2008) Tissue factor and factor VIIa as therapeutic targets in disorders of hemostasis. Annu Rev Med 59:29–41

    Article  CAS  Google Scholar 

  • Hedner U, Kisiel W (1983) Use of human factor VIIa in the treatment of two hemophilia A patients with high-titer inhibitors. J Clin Invest 71:1836–1841

    Article  CAS  Google Scholar 

  • Huntington JA (2003) Mechanisms of glycosaminoglycan activation of the serpins in hemostasis. J Thromb Haemost 1:1535–1549

    Article  CAS  Google Scholar 

  • Inbal A, Oldenburg J, Carcao M, Rosholm A, Tehranchi R, Nugent D (2012) Recombinant factor XIII: a safe and novel treatment for congenital factor XIII deficiency. Blood 119:5111–5117

    Article  CAS  Google Scholar 

  • Iorio A (2017) Using pharmacokinetics to individualize hemophilia therapy. Hematology Am Soc Hematol Educ Program 2017:595–604

    PubMed  PubMed Central  Google Scholar 

  • Jorgensen MJ, Cantor AB, Furie BC, Brown CL, Shoemaker CB, Furie B (1987) Recognition site directing vitamin K-dependent γ-carboxylation resides on the propeptide of factor IX. Cell 48:185–191

    Article  CAS  Google Scholar 

  • Keyt BA, Paoni NF, Refino CJ, Berleau L, Nguyen H, Chow A, Lai J, Pena L, Pater C, Ogez J, Etscheverry T, Botstein D, Bennett WF (1994) A faster-acting and more potent form of tissue plasminogen activator. Proc Natl Acad Sci U S A 91:3670–3674

    Article  CAS  Google Scholar 

  • Kitchen S, Tiefenbacher S, Gosselin R (2017) Factor activity assays for monitoring extended half-life FVIII and factor IX replacement therapies. Sem Thromb Hemost 43:331–337

    Article  CAS  Google Scholar 

  • Komaromi I, Bagoly Z, Muszbek L (2011) factor XIII: novel structural and functional aspects. J Thromb Haemost 9:9–20

    Article  CAS  Google Scholar 

  • Kurachi K, Davie EW (1982) Isolation and characterization of a cDNA coding for human factor IX. Proc Natl Acad Sci U S A 79:6461–6464

    Article  CAS  Google Scholar 

  • Leksa NC, Chiu PL, Bou-Assaf GM, Quan C, Liu Z, Goodman AB, Chambers MG, Tsutakawa SE, Hammel M, Peters RT, Waltz T, Kulman JD (2017) The structural basis for the functional comparability of factor VIII and the long-acting variant factor VIII Fc fusion protein. J Thromb Haemost 15:1167–1179

    Article  CAS  Google Scholar 

  • Lenting PJ, van Mourik JA, Mertens K (1998) The life cycle of coagulation factor VIII in view of its structure and function. Blood 92:3983–3996

    CAS  PubMed  Google Scholar 

  • Lovejoy AE, Reynolds TC, Visich JE, Butine MD, Young G, Belvedere MA, Blain RC, Pederson SM, Ishak LM, Nugent DJ (2006) Safety and pharmacokinetics of recombinant factor XIII-A2 administration in patients with congenital factor XIII deficiency. Blood 108:57–62

    Article  CAS  Google Scholar 

  • Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  CAS  Google Scholar 

  • Maas Enriquez M, Thrift J, Garger S, Katterle Y (2016) Bay 81-8973, a full-length recombinant factor VIII: human heat shock protein 70 improves the manufacturing process without affecting clinical safety. Prot Expr Purif 127:111–115

    Article  CAS  Google Scholar 

  • Macfarlane RG (1964) An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202:498–499

    Article  CAS  Google Scholar 

  • Mahlangu JN, Weldingh KN, Lentz SR, Kaicker S, Karim FA, Matsushita T, Recht M, Tomczak W, Windyga J, Ehrenfort S, Knobe K (2015) Changes in the amino acid sequence of the recombinant human factor VIIa analog, vatreptacog alfa, are associated with clinical immunogenicity. J Thromb Haemost 13:1989–1998

    Article  CAS  Google Scholar 

  • Mann KG, Orfeo T, Butenas S, Undas A, Brummel-Ziedins K (2009) Blood coagulation dynamics in haemostasis. Hämostaseologie 29:7–16

    Article  Google Scholar 

  • Mannucci PM (2004) Treatment of von Willebrand’s disease. N Engl J Med 531:683–694

    Article  Google Scholar 

  • Mei B, Pan C, Jiang H, Tjandra H, Strauss J, Chen Y, Liu T, Zhang X, Severs J, Newgren J, Chen J, Gu J-M, Subramanyam B, Fournel MA, Pierce GF (2010) Rational design of a fully active, long-acting PEGylated factor VIII for hemophilia A treatment. Blood 116:270–279

    Article  CAS  Google Scholar 

  • Metzner HJ, Weimer T, Kronthaler U, Lang W, Schulte S (2009) Genetic fusion to albumin improves the pharmacokinetic properties of factor IX. Thromb Haemost 102:634–644

    Article  CAS  Google Scholar 

  • Monroe DM, Jenny RJ, Van Cott KE, Buhay S, Saward LL (2016) Characterization of IXINITY (trenonacog alfa), a recombinant factor IX with primary sequence coresponding to the threonine-148 polymorph. Adv Hematol 2016:7678901

    Article  Google Scholar 

  • Moser M, Kohler B, Schmittner M, Bode C (1998) Recombinant plasminogen activators: a comparative review of the clinical pharmacology and therapeutic use of alteplase and reteplase. BioDrugs 9:455–463

    Article  CAS  Google Scholar 

  • Østergaard H, Bjelke JR, Hansen L, Petersen LC, Pedersen AA, Elm T, Møller F, Hermit MB, Holm PK, Krogh TN, Petersen LM, Ezban M, Sørensen BB, Andersen MD, Agersø H, Ahmandian H, Balling KW, Christiansen MLS, Knobe K, Nichols TC, Bjørn SE, Tranholm M (2011) Prolonged half-life and preserved enzymatic properties of factor IX selectively PEGylated on native N-glycans in the activation peptide. Blood 118:2333–2341

    Article  Google Scholar 

  • Paidas MJ, Forsyth C, Quéré I, Rodger M, Frieling JTM, Tait RC (2014) Perioperative and peripartum prevention of venous thromboembolism in patients with hereditary antithrombin deficiency using recombinant antithrombin therapy. Blood Coagul Fibrinolysis 25:444–450

    Article  CAS  Google Scholar 

  • Palla R, Peyvandi F, Shapiro A (2015) Rare bleeding disorders: diagnosis and treatment. Blood 125:2052–2061

    Article  CAS  Google Scholar 

  • Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D (1983) Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214–221

    Article  CAS  Google Scholar 

  • Perera L, Darden T, Pedersen LG (2001) Modeling human zymogen factor IX. Thromb Haemost 85:596–603

    Article  CAS  Google Scholar 

  • Peters RT, Low SC, Kamphaus GD, Dumont JA, Amari JV, Lu Q, Zarbis-Papastoitsis G, Reidy TJ, Merricks EP, Nichols TC, Bitonti AJ (2010) Prolonged activity of factor IX as a monomeric Fc fusion protein. Blood 115:2057–2064

    Article  CAS  Google Scholar 

  • Pipe SW, Montgomery RR, Pratt KP, Lenting PJ, Lillicrap D (2016) Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A. Blood 128:2007–2016

    Article  CAS  Google Scholar 

  • Rijken DC, Hoylaerts M, Collen D (1982) Fibrinolytic properties of one-chain and two-chain human extrinsic (tissue-type) plasminogen activator. J Biol Chem 257:2920–2925

    CAS  PubMed  Google Scholar 

  • Rogaev EI, Grigorenko AP, Faskhutdinova G, Kittler ELW, Moliaka YK (2009) Science 326:817

    Article  CAS  Google Scholar 

  • Sandberg H, Kannicht C, Stenlund P, Dadaian M, Oswaldsson U, Cordula C, Walter O (2012) Functional characteristics of the novel, human-derived recombinant FVIII protein product, human-cl rhFVIII. Thromb Res 130:808–817

    Article  CAS  Google Scholar 

  • Schmidbauer S, Witzel R, Robbel L, Sebastian P, Grammel N, Metzner HJ, Schulte S (2015) Physicochemical characterisation of rVIII-SingleChain, a novel recombinant single-chain factor VIII. Thromb Res 136:388–395

    Article  CAS  Google Scholar 

  • Simpson D, Siddiqui MAA, Scott LJ, Hilleman DE (2006) Reteplase: a review of its use in the management of thrombotic occlusive disorders. Am J Cardiovasc Drugs 6:265–285

    Article  CAS  Google Scholar 

  • Stennicke HR, Kjalke M, Karpf DM, Baling KW, Johansen PB, Elm T, Øvlisen K, Möller F, Holmberg HL, Gudme CN, Persson E, Hilden I, Pelzer H, Rahbeck-Nielsen H, Jespersgaard C, Bogsnes A, Pedersen AA, Kristensen AK, Peschke B, Kappers W, Rode F, Thim L, Tranholm M, Ezban M, Olsen EHN, Bjørn SE (2013) A novel B-domain O-glycoPEGylated FVIII (N8-GP) demonstrates full efficacy and prolonged effect in hemophilic mice models. Blood 121:2108–2116

    Article  CAS  Google Scholar 

  • Thim L, Vandahl B, Karlsson J, Klausen NK, Pedersen J, Krogh TN, Kjalke M, Petersen JM, Johnsen LB, Bolt G, Nørby PL, Steenstrup TD (2010) Purification and characterization of a new recombinant factor VIII (N8). Haemophilia 16:349–359

    Article  CAS  Google Scholar 

  • Tiede A, Tait RC, Shaffer DW, Baudo F, Boneu B, Dempfle CE, Horrelou MH, Klamroth R, Lazarchick J, Mumford AD, Schulman S, Shiach C, Bonfiglio LJ, Frieling JTM, Conard J, von Depka M (2008) Antithrombin alfa in hereditary antithrombin deficient patients: a phase 3 study of prophylactic intravenous administration in high risk situations. Thromb Haemost 99:616–622

    Article  CAS  Google Scholar 

  • Toole JJ, Knopf JL, Wozney JM, Sultzman LA, Bueker JL, Pittman DD, Kaufman RJ, Brown E, Shoemaker C, Orr EC, Amphlett GW, Foster WB, Coe ML, Knutson GJ, Fass DN, Hewick RM (1984) Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 312:342–347

    Article  CAS  Google Scholar 

  • Toole JJ, Pittman DD, Orr EC, Murtha P, Wasley LC, Kaufman RJ (1986) A large region (approximately equal to 95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity. Proc Natl Acad Sci U S A 83:5939–5942

    Article  CAS  Google Scholar 

  • Turecek PL, Bossard M, Graniger M, Gritsch H, Höllriegl W, Kaliwoda M, Matthiessen P, Mitterer A, Muchitsch E-M, Purtscher M, Rottensteiner H, Schiviz A, Schrenk G, Siekmann J, Varadi K, Riley T, Ehrlich HJ, Schwarz HP, Scheiflinger F (2012) BAX 855, a PEGylated rFVIII product with prolonged half-life: development, functional and structural characterisation. Hämostaseologie 32(Suppl 1):S29–S38

    Article  Google Scholar 

  • Turecek PL, Mitterer A, Matthiessen HP, Gritsch H, Varadi K, Siekmann J, Schnecker K, Plaimauer B, Kaliwoda M, Purtscher M, Woehrer W, Mundt W, Muchitsch E-M, Suiter T, Ewenstein BM, Ehrlich HJ, Schwarz HP (2009) Development of a plasma- and albumin-free recombinant von Willebrand factor. Hämostaseologie 29(Suppl 1):S32–S38

    Article  Google Scholar 

  • Vehar GA, Keyt B, Eaton D, Rodriguez H, O’Brien DP, Rotblatt F, Oppermann H, Keck R, Wood WI, Harkins RN, Tuddenham EGD, Lawn RM, Capon DJ (1984) Structure of human factor VIII. Nature 312:337–342

    Article  CAS  Google Scholar 

  • Wasley LC, Rehemtulla A, Bristol JA, Kaufman RJ (1993) PACE/furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway. J Biol Chem 268:8458–8465

    CAS  PubMed  Google Scholar 

  • Young G, Mahlangu JN (2016) Extended half-life clotting factor concentrates: results from published clinical trials. Haemophilia 22(Suppl 5):25–30

    Article  Google Scholar 

Suggested Reading

  • Bishop P, Lawson J (2004) Recombinant biologics for treatment of bleeding disorders. Nat Rev Drug Disc 3:684–694

    Article  CAS  Google Scholar 

  • Lubon H, Paleyanda RK, Velander WH, Drohan WN (1996) Blood proteins from transgenic animal bioreactors. Transf Med Rev 10(2):131–143

    Article  CAS  Google Scholar 

  • Mackman N (2008) Triggers, targets and treatments for thrombosis. Nature 451:914–918

    Article  CAS  Google Scholar 

  • Peyvandi F, Garagiola I, Seregni S (2013) Future of coagulation factor replacement therapy. J Thromb Haemost 11(Suppl 1):84–98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Mertens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mertens, K., Meijer, A.B. (2019). Recombinant Coagulation Factors and Thrombolytic Agents. In: Crommelin, D., Sindelar, R., Meibohm, B. (eds) Pharmaceutical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-00710-2_21

Download citation

Publish with us

Policies and ethics