Skip to main content

Intraoperative Ventilation Strategies for Thoracic Surgery

  • Chapter
  • First Online:
Principles and Practice of Anesthesia for Thoracic Surgery
  • 2992 Accesses

Abstract

Ventilatory strategies for one-lung ventilation (OLV) should take into account preventing intraoperative hypoxemia, intraoperative alveolar stress, and postoperative ventilator-induced lung injury (VILI). A lung-protective strategy utilizing low tidal volumes (< 6 mL/kg of predicted body weight) and limited plateau inflation pressures (<25 cm H2O) is clearly indicated for patients at high risk for developing postoperative acute respiratory distress syndrome (ARDS) or acute lung injury (ALI). Based on this recent data, the use of low tidal volumes and inflation pressures during OLV is appropriate as long as high breathing frequencies are not required and permissive hypercapnia is not contraindicated. With appropriate use of pressure and tidal volume alarms, either pressure- or volume-controlled ventilation may be used. Intrinsic positive end-expiratory pressure (PEEP) is common with OLV (utilizing a double-lumen endotracheal tube), and caution is warranted when high respiratory rates (short exhalation times) are utilized.

The addition of external PEEP does not consistently improve oxygenation and has not been shown to reduce the incidence of VILI.

A lung-opening procedure (LOP) utilizing several breaths of high inspiratory and expiratory pressures may improve oxygenation, but the hemodynamic consequences of the maneuver must be considered. While no evidence-based specific recommendations can be made for OLV, the growing body of OLV research does help the anesthesiologist select the best strategy for an individual patient and surgery.

Recognition of Denham S. Ward, MD, author of the first edition chapter and on whose work this edit is based.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lohser J, Slinger P. Lung injury after one-lung ventilation: A review of the pathophysiologic mechanisms affecting the ventilated and collapsed lung. Anesth Analg. 2015;121:302–18.

    Article  PubMed  Google Scholar 

  2. Slinger PD. Postpneumonectomy pulmonary edema: good news, bad news. Anesthesiology. 2006;105:2–5.

    Article  PubMed  Google Scholar 

  3. Zeldin RA, Normandin D, Landtwing D, Peters RM. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87:359–65.

    CAS  PubMed  Google Scholar 

  4. Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14–8.

    Article  PubMed  Google Scholar 

  5. Gothard J. Lung injury after thoracic surgery and one-lung ventilation. Curr Opin Anaesthesiol. 2006;19:5–10.

    Article  PubMed  Google Scholar 

  6. Baudouin SV. Lung injury after thoracotomy. Br J Anaesth. 2003;91:132–42.

    Article  CAS  PubMed  Google Scholar 

  7. Williams EA, Evans TW, Goldstraw P. Acute lung injury following lung resection: is one lung anaesthesia to blame? Thorax. 1996;51:114–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao L, Barnes KC. Recent advances in genetic predisposition to clinical acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2009;296:L713–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Licker M, de Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97:1558–65.

    Article  PubMed  Google Scholar 

  10. Jeon K, Yoon JW, Suh GY, et al. Risk factors for post-pneumonectomy acute lung injury/acute respiratory distress syndrome in primary lung cancer patients. Anaesth Intensive Care. 2009;37:14–9.

    CAS  PubMed  Google Scholar 

  11. Liu Z, Liu X, Huang Y, Zhao J. Intraoperative mechanical ventilation strategies in patients undergoing one-lung ventilation: a meta-analysis. Springerplus. 2016;5:1251.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gulder A, Kiss T, Serpa Neto T, Hemmes SN, Canet j SPM, Rocco PR, Schultz MJ, Pelosi P, Gama de Abreu M. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: A comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology. 2015;123(3):692–713.

    Article  Google Scholar 

  13. Blank RS, Colquhoun DA, Durieux ME, Kozower BD, McMurray TL, Bender SP, Naik BI. Management of one-lung ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–129.

    Article  PubMed  Google Scholar 

  14. Brassard CL, Lohser J, Donati F, Bussieres JS. Step by step clinical management of one-lung ventilation: continuing professional development. Can J Anaesth. 2014;61:1103–21.

    Article  PubMed  Google Scholar 

  15. Licker M, Diaper J, Villiger Y, et al. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care. 2009;13:R41.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lumb AB. Nunn’s applied respiratory physiology. 8th ed. Edinburgh, New York: Elsevier; 2017

    Google Scholar 

  17. Brodsky JB, Lemmens HJ. Left double-lumen tubes: clinical experience with 1,170 patients. J Cardiothorac Vasc Anesth. 2003;17:289–98.

    Article  PubMed  Google Scholar 

  18. Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology. 2009;110:1402–11.

    Article  PubMed  Google Scholar 

  19. Hedenstierna G, Tokics L, Strandberg A, Lundquist H, Brismar B. Correlation of gas exchange impairment to development of atelectasis during anaesthesia and muscle paralysis. Acta Anaesthesiol Scand. 1986;30:183–91.

    Article  CAS  PubMed  Google Scholar 

  20. Larsson A, Malmkvist G, Werner O. Variations in lung volume and compliance during pulmonary surgery. Br J Anaesth. 1987;59:585–91.

    Article  CAS  PubMed  Google Scholar 

  21. Katz JA, Laverne RG, Fairley HB, Thomas AN. Pulmonary oxygen exchange during endobronchial anesthesia: effect of tidal volume and PEEP. Anesthesiology. 1982;56:164–71.

    Article  CAS  PubMed  Google Scholar 

  22. Levin AI, Coetzee JF. Arterial oxygenation during one-lung anesthesia. Anesth Analg. 2005;100:12–4.

    Article  PubMed  Google Scholar 

  23. Levin AI, Coetzee JF, Coetzee A. Arterial oxygenation and one-lung anesthesia. Curr Opin Anaesthesiol. 2008;21:28–36.

    Article  PubMed  Google Scholar 

  24. Takala J. Hypoxemia due to increased venous admixture: influence of cardiac output on oxygenation. Intensive Care Med. 2007;33:908–11.

    Article  CAS  PubMed  Google Scholar 

  25. Nagendran J, Stewart K, Hoskinson M, Archer SL. An anesthesiologist’s guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Curr Opin Anaesthesiol. 2006;19:34–43.

    Article  PubMed  Google Scholar 

  26. Capan LM, Turndorf H, Patel C, Ramanathan S, Acinapura A, Chalon J. Optimization of arterial oxygenation during one-lung anesthesia. Anesth Analg. 1980;59:847–51.

    CAS  PubMed  Google Scholar 

  27. Slinger PD, Kruger M, McRae K, Winton T. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology. 2001;95:1096–102.

    Article  CAS  PubMed  Google Scholar 

  28. Maeda Y, Fujino Y, Uchiyama A, Matsuura N, Mashimo T, Nishimura M. Effects of peak inspiratory flow on development of ventilator-induced lung injury in rabbits. Anesthesiology. 2004;101:722–8.

    Article  PubMed  Google Scholar 

  29. Uhlig S. Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Physiol Lung Cell Mol Physiol. 2002;282:L892–6.

    Article  CAS  PubMed  Google Scholar 

  30. Prella M, Feihl F, Domenighetti G. Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS: comparison with volume-controlled ventilation. Chest. 2002;122:1382–8.

    Article  PubMed  Google Scholar 

  31. Davis K Jr, Branson RD, Campbell RS, Porembka DT. Comparison of volume control and pressure control ventilation: is flow waveform the difference? J Trauma. 1996;41:808–14.

    Article  PubMed  Google Scholar 

  32. Campbell RS, Davis BR. Pressure-controlled versus volume-controlled ventilation: does it matter? Respir Care. 2002;47:416–24.

    PubMed  Google Scholar 

  33. Cadi P, Guenoun T, Journois D, Chevallier JM, Diehl JL, Safran D. Pressure-controlled ventilation improves oxygenation during laparoscopic obesity surgery compared with volume-controlled ventilation. Br J Anaesth. 2008;100:709–16.

    Article  CAS  PubMed  Google Scholar 

  34. Balick-Weber CC, Nicolas P, Hedreville-Montout M, Blanchet P, Stéphan F. Respiratory and haemodynamic effects of volume-controlled vs. pressure-controlled ventilation during laparoscopy: a cross-over study with echocardiographic assessment. Br J Anaesth. 2007;99:429–35.

    Article  PubMed  Google Scholar 

  35. Heimberg C, Winterhalter M, Strüber M, Piepenbrock S, Bund M. Pressure-controlled versus volume-controlled one-lung ventilation for MIDCAB. Thorac Cardiovasc Surg. 2006;54:516–20.

    Article  CAS  PubMed  Google Scholar 

  36. Unzueta MC, Casas JI, Moral MV. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation for thoracic surgery. Anesth Analg. 2007;104:1029–33.

    Article  PubMed  Google Scholar 

  37. Choi YS, Shim JK, Na S, Hong SB, Hong YW, Oh YJ. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation in the prone position for robot-assisted esophagectomy. Surg Endosc. 2009;23:2286–91.

    Article  PubMed  Google Scholar 

  38. Tugrul M, Çamci E, Karadeniz H, Sentürk M, Pembeci K, Akpir K. Comparison of volume controlled with pressure controlled ventilation during one-lung anaesthesia. Br J Anaesth. 1997;79:306–10.

    Article  CAS  PubMed  Google Scholar 

  39. Bardoczky GI, d’Hollander AA, Rocmans P, Estenne M, Yernault JC. Respiratory mechanics and gas exchange during one-lung ventilation for thoracic surgery: the effects of end-inspiratory pause in stable COPD patients. J Cardiothorac Vasc Anesth. 1998;12:137–41.

    Article  CAS  PubMed  Google Scholar 

  40. Malhotra A. Low-tidal-volume ventilation in the acute respiratory distress syndrome. N Engl J Med. 2007;357:1113–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Petrucci N, Iacovelli W. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev. 2007;(2):CD003844.

    Google Scholar 

  42. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  43. Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med. 2009;151:566–76.

    Article  PubMed  Google Scholar 

  44. Tobin MJ. Advances in mechanical ventilation. N Engl J Med. 2001;344:1986–96.

    Article  CAS  PubMed  Google Scholar 

  45. Mols G, Priebe HJ, Guttmann J. Alveolar recruitment in acute lung injury. Br J Anaesth. 2006;96:156–66.

    Article  CAS  PubMed  Google Scholar 

  46. Morisaki H, Serita R, Innami Y, Kotake Y, Takeda J. Permissive hypercapnia during thoracic anaesthesia. Acta Anaesthesiol Scand. 1999;43:845–9.

    Article  CAS  PubMed  Google Scholar 

  47. Sticher J, Müller M, Scholz S, Schindler E, Hempelmann G. Controlled hypercapnia during one-lung ventilation in patients undergoing pulmonary resection. Acta Anaesthesiol Scand. 2001;45:842–7.

    Article  CAS  PubMed  Google Scholar 

  48. Broccard AFM. Respiratory acidosis and acute respiratory distress syndrome: time to trade in a bull market? Crit Care Med. 2006;34:229–31.

    Article  PubMed  Google Scholar 

  49. Vaneker M, Heunks LM, Joosten LA, et al. Mechanical ventilation induces a toll/interleukin-1 receptor domain-containing adapter-inducing interferon beta-dependent inflammatory response in healthy mice. Anesthesiology. 2009;111:836–43.

    Article  CAS  PubMed  Google Scholar 

  50. Curley GF, Kevin LG, Laffey JG. Mechanical ventilation: taking its toll on the lung. Anesthesiology. 2009;111:701–3.

    Article  PubMed  Google Scholar 

  51. Dos Santos CC, Slutsky AS. Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol. 2000;89:1645–55.

    Article  CAS  PubMed  Google Scholar 

  52. Hager DN, Krishnan JA, Hayden DL, Brower RG. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172:1241–5.53.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hemmes SN, Gamma de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anesthesia for open abdominal surgery (PROVHILO trial): a multicenter randomized controlled trial. Lancet. 2014;384:495–503.

    Article  PubMed  Google Scholar 

  54. Ferrando C, Belda FJ. Personalized intraoperative positive end-expiratory pressure: a further step in protective ventilation. Minerva Anestesiol. 2018;84(2):147–9.

    PubMed  Google Scholar 

  55. Predicted Body Weight Calculator. http://www.ardsnet.org/node/77460. Accessed 18 Dec 2009.

  56. Tandon S, Batchelor A, Bullock R, et al. Peri-operative risk factors for acute lung injury after elective oesophagectomy. Br J Anaesth. 2001;86:633–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kutlu CA, Williams EA, Evans TW, Pastorino U, Goldstraw P. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg. 2000;69:376–80.

    Article  CAS  PubMed  Google Scholar 

  58. Lytle FT, Brown DR. Appropriate ventilatory settings for thoracic surgery: intraoperative and postoperative. Semin Cardiothorac Vasc Anesth. 2008;12:97–108.

    Article  PubMed  Google Scholar 

  59. Slinger P. Pro: low tidal volume is indicated during one-lung ventilation. Anesth Analg. 2006;103:268–70.

    Article  PubMed  Google Scholar 

  60. Gal TJ. Con: low tidal volumes are indicated during one-lung ventilation. Anesth Analg. 2006;103:271–3.

    Article  PubMed  Google Scholar 

  61. Levin MA, McCormick PJ, Lin HM, Hosseinian L, Fischer GW. Low intraoperative tidal volume ventilation with minimal PEEP is associated with increased mortality. Br J Anaesth. 2014;113(1):97–108.

    Article  CAS  PubMed  Google Scholar 

  62. Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102:838–54.

    Article  PubMed  Google Scholar 

  63. Michelet P, D’Journo XB, Roch A, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105:911–9.

    Article  PubMed  Google Scholar 

  64. Schilling T, Kozian A, Huth C, et al. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg. 2005;101:957–65.

    Article  PubMed  Google Scholar 

  65. Wrigge H, Uhlig U, Zinserling J, et al. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg. 2004;98:775–81.

    Article  PubMed  Google Scholar 

  66. Shaw AD, Vaporciyan AA, Wu X, et al. Inflammatory gene polymorphisms influence risk of postoperative morbidity after lung resection. Ann Thorac Surg. 2005;79:1704–10.

    Article  PubMed  Google Scholar 

  67. Tekinbas C, Ulusoy H, Yulug E, et al. One-lung ventilation: for how long? J Thorac Cardiovasc Surg. 2007;134:405–10.

    Article  PubMed  Google Scholar 

  68. Misthos P, Katsaragakis S, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg. 2005;27:379–82.

    Article  CAS  PubMed  Google Scholar 

  69. Cheng YJ, Chan KC, Chien CT, Sun WZ, Lin CJ. Oxidative stress during 1-lung ventilation. J Thorac Cardiovasc Surg. 2006;132:513–8.

    Article  PubMed  Google Scholar 

  70. Gajic O, Dara SI, Mendez JL, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–24.

    Article  PubMed  Google Scholar 

  71. Schultz MJ. Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies. Med Sci Monit. 2008;14:RA22–6.

    PubMed  Google Scholar 

  72. Bonetto C, Terragni P, Ranieri VM. Does high tidal volume generate ALI/ARDS in healthy lungs? Intensive Care Med. 2005;31:893–5.

    Article  PubMed  Google Scholar 

  73. Slinger PD, Hickey DR. The interaction between applied PEEP and auto-PEEP during one-lung ventilation. J Cardiothorac Vasc Anesth. 1998;12:133–6.

    Article  CAS  PubMed  Google Scholar 

  74. Levy MM. PEEP in ARDS – how much is enough? N Engl J Med. 2004;351:389–91.

    Article  CAS  PubMed  Google Scholar 

  75. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–36.

    Article  PubMed  Google Scholar 

  76. Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:637–45.

    Article  CAS  PubMed  Google Scholar 

  77. Mercat A, Richard JC, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:646–55.

    Article  CAS  PubMed  Google Scholar 

  78. Gattinoni L, Caironi P. Refining ventilatory treatment for acute lung injury and acute respiratory distress syndrome. JAMA. 2008;299:691–3.

    Article  CAS  PubMed  Google Scholar 

  79. Ducros L, Moutafis M, Castelain MH, Liu N, Fischler M. Pulmonary air trapping during two-lung and one-lung ventilation. J Cardiothorac Vasc Anesth. 1999;13:35–9.

    Article  CAS  PubMed  Google Scholar 

  80. Yokota K, Toriumi T, Sari A, Endou S, Mihira M. Auto-positive end-expiratory pressure during one-lung ventilation using a double-lumen endobronchial tube. Anesth Analg. 1996;82:1007–10.

    CAS  PubMed  Google Scholar 

  81. Bardoczky GI, Yernault JC, Engelman EE, Velghe CE, Cappello M, Hollander AA. Intrinsic positive end-expiratory pressure during one-lung ventilation for thoracic surgery. The influence of preoperative pulmonary function. Chest. 1996;110:180–4.

    Article  CAS  PubMed  Google Scholar 

  82. Blanch L, Bernabé F, Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care. 2005;50:110–23.

    PubMed  Google Scholar 

  83. Bardoczky GI, d’Hollander AA, Cappello M, Yernault JC. Interrupted expiratory flow on automatically constructed flow-volume curves may determine the presence of intrinsic positive end-expiratory pressure during one-lung ventilation. Anesth Analg. 1998;86:880–4.

    Article  CAS  PubMed  Google Scholar 

  84. Benumof JL. One-lung ventilation: which lung should be PEEPed? Anesthesiology. 1982;56:161–3.

    Article  CAS  PubMed  Google Scholar 

  85. Mascotto G, Bizzarri M, Messina M, et al. Prospective, randomized, controlled evaluation of the preventive effects of positive end-expiratory pressure on patient oxygenation during one-lung ventilation. Eur J Anaesthesiol. 2003;20:704–10.

    Article  CAS  PubMed  Google Scholar 

  86. Leong LM, Chatterjee S, Gao F. The effect of positive end expiratory pressure on the respiratory profile during one-lung ventilation for thoracotomy. Anaesthesia. 2007;62:23–6.

    Article  CAS  PubMed  Google Scholar 

  87. Cohen E, Eisenkraft JB. Positive end-expiratory pressure during one-lung ventilation improves oxygenation in patients with low arterial oxygen tensions. J Cardiothorac Vasc Anesth. 1996;10:578–82.

    Article  CAS  PubMed  Google Scholar 

  88. Valenza F, Ronzoni G, Perrone L, et al. Positive end-expiratory pressure applied to the dependent lung during one-lung ventilation improves oxygenation and respiratory mechanics in patients with high FEV1. Eur J Anaesthesiol. 2004;21:938–43.

    Article  CAS  PubMed  Google Scholar 

  89. Inomata S, Nishikawa T, Saito S, Kihara S. “Best” PEEP during one-lung ventilation. Br J Anaesth. 1997;78:754–6.

    Article  CAS  PubMed  Google Scholar 

  90. Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992;18:319–21.

    Article  CAS  PubMed  Google Scholar 

  91. Lapinsky SE, Mehta S. Bench-to-bedside review: recruitment and recruiting maneuvers. Crit Care. 2005;9:60–5.

    Article  PubMed  Google Scholar 

  92. Tusman G, Böhm SH, Sipmann FS, Maisch S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98:1604–9.

    Article  PubMed  Google Scholar 

  93. Cinnella G, Grasso S, Natale C, et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol Scand. 2008;52:766–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Macpherson .

Editor information

Editors and Affiliations

Clinical Case Discussion

Clinical Case Discussion

A 72-year-old woman, with weight = 98 kg, height = 168 cm (BMI = 34.7, PBW = 60.3 kg), and a 43 pack-year smoking history (stopped smoking 2 weeks ago), presents for left upper lobectomy for small cell carcinoma via a left VATS. Past medical history includes hypertension, type 2 DM, and obstructive sleep apnea (CPAP at 10 cm H2O nightly).

Preoperative pulmonary function testing showed:

  • FVC = 2.82 L (57% predicted).

  • FEV1 = 1.58 (42% predicted).

  • FEV1/FVC = 56%.

  • DLCO = 23.9 mL/min/mmHg (79% predicted).

A left 37 French DLT was placed without difficulty, and its correct position was confirmed via fiber-optic bronchoscopy. Two-lung ventilation was initiated, while the patient was supine with VCV incorporating a 10% end-inspiratory pause with a tidal volume of 550 mL and a rate of 10 breaths/min. Peak airway pressures were 22 cm H2O and the PETCO2 was 45 mmHg. SpO2 = 98% on 100% oxygen.

  1. (a)

    What mode of ventilation and inspiratory gas concentration would you use for initiating OLV? What tidal volume would you use?

    Either PCV or VCV would be acceptable. Initial tidal volume should be set based on the PBW, typically at 4–6 mL/kg. 6 mL/kg × 60.3 kg PBW = 361 mL, so initial tidal volume should be reduced and the OLV peak and plateau pressures noted.

  2. (b)

    After setting the tidal volume to 361 mL with a rate of 14 and 0 end-expiratory pressure (ZEEP), the peak inspiratory pressure is 28 cm H2O, and the PETCO2 is 49 mmHg. Is any further adjustment of the ventilator required? Would other clinical measurements be useful?

    With the peak inspiratory pressure less than 30 mmHg (presumable if VCV is being used, the plateau pressure, which is more reflective of the alveolar distending pressure, will be less than the peak) and the end-tidal CO2 at an acceptable level, no further adjustments are needed. Initially observing the end-tidal CO2 (PETCO2) can guide the respiratory rate setting, but a blood gas would be helpful because the increased alveolar dead space associated with this patient’s COPD may result in a significant arterial to end-tidal gradient.

  3. (c)

    What would your recommendation for PEEP be after making these adjustments?

    At low tidal volumes and in patients with ALI, PEEP may help reduce the opening and closing of atelectatic regions of the lung, improving oxygenation and possibly prevent further lung injury. However, a high PEEP may also reduce oxygenation during OLV by forcing more blood flow to the unventilated lung. PEEP up to 5 cm H2O may be used but higher levels should be instituted cautiously.

  4. (d)

    Thirty minutes after the start of OLV, SpO2 falls to 88%. What maneuvers could be employed to stabilize the SpO2?

    Whenever there is an acute decrease in the SpO2, after increasing the FiO2, the position of the DLT must be carefully checked with a fiber-optic bronchoscopy. In this case entry of the left bronchial lumen into the left lower lobe orifice could result in the tracheal opening of the DLT to abut the carina and result in a decrease in right lung ventilation.

A lung opening procedure (LOP) with a few breaths of high PEEP and inspiratory pressure may also be of benefit, but caution must be exercised if there is any indication of hemodynamic instability.

If hypoxemia still persists after optimal positioning of the DLT and a LOP, then CPAP to the unventilated lung is the most reliable way of decreasing the venous admixture; however, this is unlikely to provide acceptable operating conditions for a VATS. Switching to PCV or increasing the end-inspiratory pause with VCV may be useful. With a large DLT and a respiratory rate of only 14, significant intrinsic PEEP is unlikely, but a reduction in the inspiratory rate (with perhaps an increase in the tidal volume) can be tried.

A blood gas should be obtained and the surgeon notified that it may be necessary to return to two-lung ventilation intermittently if the saturation falls any lower. Since a low cardiac output will cause hypoxemia during OLV, interventions to increase the cardiac output may be of value.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Macpherson, J.A. (2019). Intraoperative Ventilation Strategies for Thoracic Surgery. In: Slinger, P. (eds) Principles and Practice of Anesthesia for Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-00859-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00859-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00858-1

  • Online ISBN: 978-3-030-00859-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics