Skip to main content

A UAV-Driven Surveillance System to Support Rescue Intervention

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2018)

Abstract

In recent years, the intelligent surveillance systems have attracted many application domains, due to the increasing demand on security and safety. Unmanned Areal Vehicles (AUVs) represent the reliable, low-cost solution for mobile sensor node deployment, localization, and collection of measurements.

This paper presents a surveillance UAV-based system, aimed at understanding the scene situation by collecting raw data from the environment (by exploiting some possible sensor modalities: CCTV camera, infrared camera, thermal camera, radar, etc.), processing their fusion and yielding a semantic, high-level scenario description. UAV is able to recognize objects and the spatio-temporal relations with other objects and the environment. Moreover, UAV is able to individuate alerting situations and suggest a recommended intervention to humans. A Fuzzy cognitive map model is indeed, injected in the UAV: from the semantic description of the scenario, the UAV is able to deduct casual effect of occurring situations, that enhances the scenario understanding, especially when alarming situations are discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernad, J., Bobed, C., Mena, E., Ilarri, S.: A formalization for semantic location granules. Int. J. Geogr. Inf. Sci. 27(6), 1090–1108 (2013). https://doi.org/10.1080/13658816.2012.739691

    Article  Google Scholar 

  2. Bobed, C., Ilarri, S., Mena, E.: Exploiting the semantics of location granules in location-dependent queries. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 73–87. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15576-5_8

    Chapter  Google Scholar 

  3. Cavaliere, D., Loia, V., Saggese, A., Senatore, S., Vento, M.: Semantically enhanced UAVs to increase the aerial scene understanding. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–13 (2017). https://doi.org/10.1109/TSMC.2017.2757462

    Article  Google Scholar 

  4. Chauvin, L., Genest, D., Loiseau, S.: Ontological cognitive map. In: 2008 20th IEEE International Conference on Tools with Artificial Intelligence, vol. 2, pp. 225–232, November 2008. https://doi.org/10.1109/ICTAI.2008.42

  5. Crispim-Junior, C.F., et al.: Semantic event fusion of different visual modality concepts for activity recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38(8), 1598–1611 (2016). https://doi.org/10.1109/TPAMI.2016.2537323

    Article  Google Scholar 

  6. D’Aniello, G., Gaeta, M., Hong, T.P.: Effective quality-aware sensor data management. IEEE Trans. Emerg. Topics Comput. Intell. 2(1), 65–77 (2018). https://doi.org/10.1109/TETCI.2017.2782800

    Article  Google Scholar 

  7. Glykas, M.: Fuzzy cognitive strategic maps in business process performance measurement. Expert Syst. Appl. 40(1), 1–14 (2013). https://doi.org/10.1016/j.eswa.2012.01.078

    Article  Google Scholar 

  8. Glykas, M.: Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools and Applications, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03220-2

    Book  MATH  Google Scholar 

  9. Gómez-Romero, J., Patricio, M.A., García, J., Molina, J.M.: Ontology-based context representation and reasoning for object tracking and scene interpretation in video. Expert Syst. Appl. 38(6), 7494–7510 (2011). https://doi.org/10.1016/j.eswa.2010.12.118

    Article  Google Scholar 

  10. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24(1), 65–75 (1986). https://doi.org/10.1016/S0020-7373(86)80040-2

    Article  MATH  Google Scholar 

  11. Lee, D.H., Lee, H.: Construction of holistic fuzzy cognitive maps using ontology matching method. Expert Syst. Appl. 42(14), 5954–5962 (2015). https://doi.org/10.1016/j.eswa.2015.03.020

    Article  Google Scholar 

  12. Lee, H., Kwon, S.J.: Ontological semantic inference based on cognitive map. Expert Syst. Appl. 41(6), 2981–2988 (2014). https://doi.org/10.1016/j.eswa.2013.10.029

    Article  Google Scholar 

  13. Li, X., Lu, H.: Object tracking based on local learning. In: 2012 19th IEEE International Conference on Image Processing, pp. 413–416, September 2012. https://doi.org/10.1109/ICIP.2012.6466883

  14. Li, Y., Guo, Y., Kao, Y., He, R.: Image piece learning for weakly supervised semantic segmentation. IEEE Trans. Syst. Man Cybern. Syst. 47(4), 648–659 (2017). https://doi.org/10.1109/TSMC.2016.2623683

    Article  Google Scholar 

  15. Meditskos, G., Kompatsiaris, I.: iknow: ontology-driven situational awareness for the recognition of activities of daily living. Pervasive Mob. Comput. 40, 17–41 (2017). https://doi.org/10.1016/j.pmcj.2017.05.003. http://www.sciencedirect.com/science/article/pii/S157411921630195X

    Article  Google Scholar 

  16. Min, W., Zhang, Y., Li, J., Xu, S.: Recognition of pedestrian activity based on dropped-object detection. Sig. Process. 144, 238–252 (2018). https://doi.org/10.1016/j.sigpro.2017.09.024

    Article  Google Scholar 

  17. Piccardi, M.: Background subtraction techniques: a review. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), vol. 4, pp. 3099–3104 vol. 4, October 2004. https://doi.org/10.1109/ICSMC.2004.1400815

  18. Rangel, J.C., Martínez-Gómez, J., Romero-González, C., García-Varea, I., Cazorla, M.: Semi-supervised 3D object recognition through CNN labeling. Appl. Soft Comput. 65, 603–613 (2018). https://doi.org/10.1016/j.asoc.2018.02.005

    Article  Google Scholar 

  19. Smedt, F.D., Hulens, D., Goedemé, T.: On-board real-time tracking of pedestrians on a UAV. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–8, June 2015. https://doi.org/10.1109/CVPRW.2015.7301359

  20. Snidaro, L., García, J., Llinas, J.: Context-based information fusion: a survey and discussion. Inf. Fusion 25, 16–31 (2015). https://doi.org/10.1016/j.inffus.2015.01.002

    Article  Google Scholar 

  21. Yuan, Y., Mou, L., Lu, X.: Scene recognition by manifold regularized deep learning architecture. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2222–2233 (2015). https://doi.org/10.1109/TNNLS.2014.2359471

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Senatore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavaliere, D., Loia, V., Senatore, S. (2018). A UAV-Driven Surveillance System to Support Rescue Intervention. In: Cerulli, R., Raiconi, A., Voß, S. (eds) Computational Logistics. ICCL 2018. Lecture Notes in Computer Science(), vol 11184. Springer, Cham. https://doi.org/10.1007/978-3-030-00898-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00898-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00897-0

  • Online ISBN: 978-3-030-00898-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics