Skip to main content

Abstract

The sequence of processes that lead from continental rifting to oceanic drifting during the genesis of passive margins remains debated. Wide-angle seismics has, over the past decades, proven an efficient tool to image the architecture and to quantify the acoustic velocity of continental margins. These data, combined with structural interpretation and stratigraphic/kinematic/mechanical numerical modeling, have led to better characterization of the crustal and mantellic processes active from rifting to drifting. The Protoc project is focused on the accretion of proto-oceanic crust that occurs before the more homogeneous and stable oceanic drift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Hinsbergen, D.J.J., et al.: Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 33, 393–419 (2014). https://doi.org/10.1002/2013TC003349

    Article  Google Scholar 

  2. Leroux, et al.: Atlas of the stratigraphic markers in the western Mediterranean sea with focus on the Gulf of Lion. Commission de la Carte Géologique du Monde (in press)

    Google Scholar 

  3. Gardosh, M.A., et al.: Tethyan rifting in the Levant region and its role in Early Mesozoic crustal evolution. Geol. Soc. London Spec. Publ. 341, 9–36 (2010). https://doi.org/10.1144/SP341.2

    Article  Google Scholar 

  4. Montadert, L., et al.: Petroleum systems offshore Cyprus. AAPG Memoir 106, 301–334 (2014). https://doi.org/10.1036/13431860M1063611

    Google Scholar 

  5. Moulin, M., et al.: Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaiAngo project). Geophys. J. Int. 162, 793–810 (2005). https://doi.org/10.1111/j.1365-246X.2005.02668.x

    Article  Google Scholar 

  6. Aslanian, D., et al.: Brasilian and Angolan Passive Margins: the kinematic constraints. Tectonophysics Spec. Issue Role Magmatism 468, 98–112 (2009). https://doi.org/10.1016/j.tecto.2008.12.016

    Google Scholar 

  7. Evain, M., et al.: Deep structure of the Santos Basin-São Paulo Plateau System (SSPS). Geophys. J. Int. 120(8), 5401–5431 (2015). https://doi.org/10.1002/2014jb011561

    Article  Google Scholar 

  8. Loureiro, A., et al.: Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil. J. S. Am. Earth Sci. 84, 351–372 (2018). https://doi.org/10.1016/j.jsames.2018.01.009

    Article  Google Scholar 

  9. Moulin, M., et al.: Deep crustal structure across an young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment)—I. Gulf of Lion’s margin. BSGF 186, 309–330 (2015). https://doi.org/10.2113/gssgfbull.186.4-5.309

    Article  Google Scholar 

  10. Afilhado, A., et al.: Deep crustal structure across an young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment)—II. Sardinia’s margin. BSGF, ILP Special volume 186, 331–351 (2015). https://doi.org/10.2113/gssgfbull.186.4-5.331

  11. Jolivet, L., et al.: Continental breakup and the dynamics of rifting in back-arc basins: the Gulf of Lion margin. Tectonics 34, 662–679 (2015). https://doi.org/10.1002/2014tc003570

    Article  Google Scholar 

  12. Boillot, G., Froitzheim, N.: Non-volcanic rifted margins, continental break-up and the onset of sea-floor spreading: some outstanding questions. Geol. Soc. London Spec. Publ. 187, 9–30 (2001). https://doi.org/10.1144/gsl.sp.2001.187.01.02

  13. Lavier, L., Manatschal, G.: A mechanism to thin the continental lithosphere at magma-poor margins. Nature 440, 324–328 (2006). https://doi.org/10.1038/nature04608

    Article  Google Scholar 

  14. Klingelhoefer, F., et al.: Imaging proto-oceanic crust off the Brazilian Continental Margin. Geophys. J. Int. 200(1), 471–488 (2014). https://doi.org/10.1093/gji/ggu387

    Article  Google Scholar 

  15. McKenzie, D., et al.: Characteristics and consequences of flow in the lower crust. J. Geophys. Res. 105(B5), 11029–11046 (2000). https://doi.org/10.1029/1999JB900446

    Article  Google Scholar 

  16. Bott, M.H.P.: Evolution of young continental margins and formation of shelf basin. Tectonophysics 11, 319–337 (1971). https://doi.org/10.1016/0040-1951(71)90024-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Schnürle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schnürle, P. et al. (2019). From Rifting to Spreading: The Proto-Oceanic Crust. In: Rossetti, F., et al. The Structural Geology Contribution to the Africa-Eurasia Geology: Basement and Reservoir Structure, Ore Mineralisation and Tectonic Modelling. CAJG 2018. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-01455-1_72

Download citation

Publish with us

Policies and ethics