Skip to main content

A Robust Watermarking Scheme Using Machine Learning Transmitted Over High-Speed Network for Smart Cities

  • Chapter
  • First Online:
Security in Smart Cities: Models, Applications, and Challenges
  • The original version of this chapter was revised: The incorrect affiliation of author “Ankur Rai” has now been replaced with the correct one. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-01560-2_16

Abstract

Medical images are more typical than any other ordinary images. In telemedicine applications, transmission of medical image via open channel, demands strong security and copyright protection. This paper discusses a safe and secure watermarking technique using a machine learning algorithm. In this paper, propagation of watermarked image is simulated over a 3GPP/LTE downlink physical layer. In our proposed robust watermarking model, a double layer security is introduced to ensure the robustness of embedded data and then a transform domain-based hybrid watermarking technique, embeds the scrambled data into the transform coefficients of the cover image. Support Vector Machine (SVM) is work as a classifier, which classify a medical image into two distinct areas i.e. Non-Region of Interest (NROI) and Region of Interest (ROI). The secure watermark information is embedded into the unimportant part of the medical image, using the proposed embedding algorithm. The objective of the projected model is to avoid any quality degradation to the medical image. The result achieved in this experiment reveal that 10−6 Bit Error Rate (BER) value is realizable for greater value of Signal to Noise Ratio (SNR) i.e. more than 10.4 dB of SNR. The Peak Signal to Noise Ratio (PSNR) of received cover image is more than 35 dB, which is acceptable for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 28 December 2019

    In the original version of the book, the following belated correction has been incorporated: The affiliation of Ankur Rai has been changed from “Kamla Nehru Institute of Technology, Sultanpur 228118, India” to “Invertis University, Bareilly, Uttar Pradesh, India”. The erratum chapter and the book have been updated with the change.

References

  1. Emad K, Rajan P, uzair Q, Awab F (2013) Long term evolution. IOSR J Electron Commun Eng

    Google Scholar 

  2. State of the Mobile Web (2013) Opera tech report

    Google Scholar 

  3. Elhoseny M, Elminir H, Riad A, Yuan X (2016) A secure data routing schema for WSN using elliptic curve cryptography and homomorphic encryption. J King Saud Univ Comput Inf Sci 28(3):262–275. https://doi.org/10.1016/j.jksuci.2015.11.001 Elsevier

    Article  Google Scholar 

  4. Elhoseny M, Ramírez-González G, Abu-Elnasr O, Shawkat S, Arunkumar N, Farouk A (2018) Secure medical data transmission model for IoT-based healthcare systems. IEEE Access 6:20596–20608. https://doi.org/10.1109/ACCESS.2018.2817615

    Article  Google Scholar 

  5. Shehab A, Ismail A, Osman L, Elhoseny M, El-Henawy IM (2018a) Quantified self using IoT wearable devices. In: Hassanien A, Shaalan K, Gaber T, Tolba M (eds) Proceedings of the international conference on advanced intelligent systems and informatics 2017. AISI 2017. Advances in intelligent systems and computing, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-64861-3_77

    Google Scholar 

  6. Shehab A, Elhoseny M, Muhammad K, Sangaiah A, Yang P, Huang H, Hou G (2018b) Secure and Robust Fragile watermarking scheme for medical images. IEEE Access 6(1):10269–10278. https://doi.org/10.1109/access.2018.2799240

    Article  Google Scholar 

  7. Darwish A, Hassanien A, Elhoseny M, Sangaiah A, Muhammad K (2017) The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems. J Ambient Intell Humanized Comput. https://doi.org/10.1007/s12652-017-0659-1

    Article  Google Scholar 

  8. GPP TS 36.300 (2010c) Evolved universal terrestrial radio access (EUTRA); Overall description (Release 8)

    Google Scholar 

  9. GPP TS 23.402 (2010a) UTRAN- and E-UTRAN-based systems, Architecture enhancement for non-3GPP access (Release 8)

    Google Scholar 

  10. GPP TS 36.211 (2010b) Evolved universal terrestrial radio access (EUTRA), physical channels and modulations (Release 8)

    Google Scholar 

  11. Astely D, Dahlman E, Furuskar A, Jading Y, Lindström M, Parkvall S (2009) LTE: the evolution of mobile broadband. IEEE communication magazine

    Google Scholar 

  12. Larmo A, Lindström M, Meyer M, Pelletier G, Torsner J, Wiemann H (2009) The LTE link-layer design‖. IEEE Commun Mag 47(4):52–59

    Article  Google Scholar 

  13. Jim Z, Wes M (2007) White paper on overview of the 3GPP long term evolution physical layer, freescale semiconductor

    Google Scholar 

  14. Lee J, Han J, Zhang J (2009) MIMO technologies in 3GPP LTE and LTE-Advanced. J Wireless Commun Netw 2009

    Google Scholar 

  15. Furuskar A, Jonsson T, Lundevall M (2008) Ericsson Research, Sweden, The LTE radio interface- key characteristics and performance.‖ In: IEEE International conference on personal, indoor and mobile radio communications

    Google Scholar 

  16. Morelli M, Kuo CCJ, Pun MO (2007) Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review. Proc IEEE 95(7):1394–1427

    Article  Google Scholar 

  17. YangSun L, Heau JK, Yoon HK (2005) Copyright authentication enhancement of digital watermarking based on intelligent human visual system scheme. LNAI 3682:567–572. Springer, Berlin, Heidelberg KES 2005

    Google Scholar 

  18. Speth M, Fechtel S, Fock G, Meyr H (1999) Optimum receiver design for wireless broadband systems using OFDM. Part I. IEEE Trans Commun 47(11):1668–1677

    Article  Google Scholar 

  19. Parah A, Shabir SA, Javaid HMA, Bhat GM (2014) Data hiding in scrambled images: A new double layer security data hiding technique. Sci Dir Comput Electr Eng 40:70–82

    Article  Google Scholar 

  20. Lu CS, Liao HYM, Huang SK, Sze CJ (1999) Cocktail watermarking on images. In: 3rd international workshop on information hiding, Dresden, Germany

    Google Scholar 

  21. Wang RZ, Lin CF, Lin JC (2003) Image hiding by optimal LSB substitution and genetic algorithm. Pattern Recogn 34:671–683

    Article  Google Scholar 

  22. Ali HA (2007) Qualitative spatial image data hiding for secure data transmission. GVIP J 7(2):35–37

    MathSciNet  Google Scholar 

  23. Ghosh S, Talapatra S, Chatterjee N, Maity SP, Rahaman H (2012) FPGA based implementation of embedding and decoding architecture for binary watermark by spread spectrum scheme in spatial domain. Bonfring Int J Adva Image Process 2(4)

    Article  Google Scholar 

  24. Barni BF, Piva A (1998) A DCT domain system for robust image watermarking. IEEE Trans Signal Process 66:357–372

    MATH  Google Scholar 

  25. Hernandez JR, Amado M, Gonzalez PF (2000) DCT-domain watermarking techniques for still images: detector performance analysis and a new structure. IEEE Trans Image Process 9:55–68

    Article  Google Scholar 

  26. Tiwari N, Ramaiya MK, Sharma M (2013) Digital watermarking using DWT and DES. In: IEEE 3rd international on advance computing conference (IACC)

    Google Scholar 

  27. Gonge SS, Bakal JW (2013) Robust digital watermarking techniques by using DCT and spread spectrum. Int J Electr Electron Data Commun 1. ISSN: 2320-2084

    Google Scholar 

  28. Singh AP, Mishra A (2011) Wavelet based watermarking on digital image. Indian J Comput Sci Eng 1

    Google Scholar 

  29. Dey N, Roy AB, Dey S (2013) A novel approach of color image hiding using RGB color planes and DWT. Int J Comput Appl 36(5):0975–8887

    Google Scholar 

  30. Chakraborty S, Chatterjee S, Dey N, Ashour AS, Hassanien AE (2016) Comparative approach between singular value decomposition and randomized singular value decomposition-based watermarking. In: Intelligent techniques in signal processing for multimedia security vol. 660 of the series Studies in computational intelligence, p 133–149 https://doi.org/10.1007/978-3-319-44790-2_7

    Google Scholar 

  31. Dey N, Ashour AS., Chakraborty S, Banerjee S, Gospodinova E, Gospodinov M, Hassanien AE (2016) Watermarking in biomedical signal processing. In: Intelligent techniques in signal processing for multimedia security, vol 660 of the series Studies in computational intelligence, p 345–369 https://doi.org/10.1007/978-3-319-44790-2_16

    Google Scholar 

  32. Zhou Z, Tang B, Liu X (2006) A block svd based image watermarking method. In: Proceedings of the 6th world congress on intelligent control and automation, Dalian, China

    Google Scholar 

  33. Divecha NH, Jani NN (2012) Image watermarking algorithm using DCT, DWT and SVD. In: IJCA proceedings on national conference on innovative paradigms in engineering and technology

    Google Scholar 

  34. Singh AK, Dave M, Mohan A (2015) Robust and secure multiple watermarking in wavelet domain. J Med Imaging Health Informatics 5:406–414

    Article  Google Scholar 

  35. Colin RR, Claudia FU, Blas GJT (2007) Data hiding scheme for medical images. In: 17th international conference on electronics. Comput Commun, pp 32–32. https://doi.org/10.1109/conielecomp.2007.14

  36. Giakoumaki A, Pavlopoulos S, Koutsouris D (2006) Multiple image watermarking applied to health information management. IEEE Trans Inf Technol Biomed 10(4):722–732. https://doi.org/10.1109/TITB.2006.875655

    Article  Google Scholar 

  37. Hyung KL, Hee JK, Ki RK, Jong KL (2005) ROI medical image watermarking using DWT and bit-plane. In: Asia-Pacific conference, communications, pp 512–515

    Google Scholar 

  38. Singh AK, Kumar B, Dave M, Mohan A (2015) Multiple watermarking on medical images using selective discrete wavelet transform coefficients. J Med Imaging Health Inf 5:607–614

    Article  Google Scholar 

  39. Chiang KH, Chien KCC, Chang RF, Yen HY (2008) Tamper detection and restoring system for medical images using wavelet-based reversible data embedding. J Digital Imaging 21:77–90

    Article  Google Scholar 

  40. Eswaraiah R, Reddy ES (2014) A fragile ROI-based medical image watermarking technique with tamper detection and recovery. In: Fourth international conference on communication systems and network technologies

    Google Scholar 

  41. Lai CC, Tsai CC (2010) Digital image watermarking using discrete wavelet transform and singular value decomposition. IEEE Trans Instrum Meas 59(11):3060–3063

    Article  Google Scholar 

  42. Sharma A, Singh AK, Ghrera SP (2016) Robust and Secure Multiple Watermarking for Medical Images. Wirel Pers Commun

    Google Scholar 

  43. Seetha M, MuraliKrishna IV, Deekshatulu BL (2007) Comparison of advanced techniques of image classification. Map World Forum

    Google Scholar 

  44. Virmani KJ, Dey N, Kumar V (2015) PCA-PNN and PCA-SVM based CAD systems for breast density classification. In: Applications of intelligent optimization in biology and medicine, vol 96 of the series Intelligent Systems pp 159–180 https://doi.org/10.1007/978-3-319-21212-8_7

    Google Scholar 

  45. Bhattacherjee A, Roy S, Paul S, Roy P, Kausar N, Dey N (2016) Classification approach for breast cancer detection using back propagation neural network: a study. In: IGI GLOBAL biomedical image analysis and mining techniques for improved health outcomes https://doi.org/10.4018/978-1-4666-8811-7.ch010

    Google Scholar 

  46. Zemmal N, Azizi N, Sellami M, Dey N (2015) Automated classification of mammographic abnormalities using transductive semi supervised learning algorithm. In: Proceedings of the mediterranean conference on information & communication technologies, pp 657–662 https://doi.org/10.1007/978-3-319-30298-0_73

    Google Scholar 

  47. Shao Y, Chen W, Liu C (2008) Multiwavelet-based digital watermarking with support vector machine technique. In: CCDC

    Google Scholar 

  48. Ramly S, Aljunid SA, Hussain HS (2011) SVM-SS watermarking model for medical images. CCIS 194:372–386

    Google Scholar 

  49. Yen SH, Wang CJ (2006) SVM based watermarking technique. Tamkang J Sci Eng 9(2):141–150

    MathSciNet  Google Scholar 

  50. Rathi SC, Inamdar VS (2012) Medical images authentication through watermarking preserving ROI. Health Inform Int J (HIIJ) 1(1):27–42

    Google Scholar 

  51. Coatrieux G, Maitre H, Sankur B, Rolland Y, Collorec R (2000) Relevance of watermarking in medical imaging. In: Proceedings 2000 I.E. EMBS international conference on information technology applications in biomedicine. ITAB-ITIS 2000. Joint meeting third IEEE EMBS international conference on information technology, pp 250–255. https://doi.org/10.1109/itab.2000.892396

  52. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:121–167

    Article  Google Scholar 

  53. Cao XB, Xu YW, Chen D, Qiao H (2009) Associated evolution of a support vector machine-based classifier for pedestrian detection. Inf Sci 179(8):1070–1077

    Article  Google Scholar 

  54. Tsai HH, Sun DW (2007) Color image watermark extraction based on support vector machines. Inf Sci 177(2):550–569

    Article  Google Scholar 

  55. Lin TC, Lin CM (2009) Wavelet-based copyright-protection scheme for digital images based on local features. Inf Sci 179(19, 9):3349–3358

    Article  Google Scholar 

  56. Ruanaidh JJKO, Pun T (1997) Rotation, scale and translation invariant digital image watermarking. Signal Process 66(3):303–317, 28 May 1998

    Google Scholar 

  57. Zhou Y, Jin W (2012) A robust digital image multi-watermarking scheme in the dwt domain. In: International conference on techniques and informatics (ICSAI 2012)

    Google Scholar 

  58. Singh AK, Kumar B, Dave M, Mohan A (2014) Robust and imperceptible dual watermarking for telemedicine applications. Wirel Pers Commun 80:1415–1433

    Article  Google Scholar 

  59. Zain J, Clarke M (2005) Security in telemedicine: issues in watermarking medical images. In: 3rd International conference: sciences of electronic, technologies of information and telecommunications, Tunisia

    Google Scholar 

  60. Memon NA, Gilani SAM, Ali A (2009a) Watermarking of chest CT scan medical images for content authentication. In: ICICT, pp 175–180

    Google Scholar 

  61. Memon NA, Gilani SAM, Qayoom S (2009b) Multiple watermarking of medical images for content authentication and recovery. In: IEEE: 13th International, INMIC, pp 1–6, 14–15

    Google Scholar 

  62. Planitz BM, Maeder AJ (2005) A study of block-based medical image watermarking using a perceptual similarity metric. In: Proceedings in DICTA

    Google Scholar 

  63. Singh HV, Singh AK, Yadav S, Mohan A (2014) DCT based secure data hiding for intellectual property right protection. CSI Trans ICT 2:163–168

    Article  Google Scholar 

  64. Singh HV, Yadav S, Mohan A (2013) Intellectual property right protection of image data using DCT and spread Spectrum-based watermarking. Int J Electron Secur Digital Forensics 5:218–228

    Article  Google Scholar 

  65. Fernandes FCA, Spaendonck RLV, Burrus CS (2002) Shiftable, projection-based complex wavelet transforms. In: Acoustics, speech, and signal processing (ICASSP) on IEEE international conference

    Google Scholar 

  66. Zear A, Singh A K, Kumar P (2016a) A proposed secure multiple watermarking technique based on DWT, DCT and SVD for application in medicine. Multimedia tools and applications

    Google Scholar 

  67. Zear A, Singh AK, Kumar P (2016b) Multiple Watermarking for Healthcare Applications. J Intell Syst

    Google Scholar 

  68. Ganic E, Eskicioglu AM (2004) Robust DWT-SVD domain image watermarking: embedding data in all frequencies. In: Proceedings of the 2004 workshop on multimedia security, Magdeburg, Germany, pp 166–174

    Google Scholar 

  69. Basant K, Harsh VS, Singh SP, Anand M (2008) Novel efficient and secure medical data transmission on WiMAX. Telemed e-Health 14(10) https://doi.org/10.1089/tmj.2008.0033

    Article  Google Scholar 

  70. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, A., Singh, H.V. (2019). A Robust Watermarking Scheme Using Machine Learning Transmitted Over High-Speed Network for Smart Cities. In: Hassanien, A., Elhoseny, M., Ahmed, S., Singh, A. (eds) Security in Smart Cities: Models, Applications, and Challenges. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-01560-2_11

Download citation

Publish with us

Policies and ethics