Skip to main content

Procesi Bundles and Symplectic Reflection Algebras

  • Conference paper
  • First Online:
Algebraic and Analytic Microlocal Analysis (AAMA 2013)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 269))

Included in the following conference series:

Abstract

In this survey we describe an interplay between Procesi bundles on symplectic resolutions of quotient singularities and Symplectic reflection algebras. Procesi bundles were constructed by Haiman and, in a greater generality, by Bezrukavnikov and Kaledin. Symplectic reflection algebras are deformations of skew-group algebras defined in complete generality by Etingof and Ginzburg. We construct and classify Procesi bundles, prove an isomorphism between spherical Symplectic reflection algebras, give a proof of wreath Macdonald positivity and of localization theorems for cyclotomic Rational Cherednik algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    After this survey was written, I have proved that \(e\mathbf{H}e\) is a universal graded deformation of \(\mathbb {C}[V_n]^{\Gamma _n}\) compatible with the Poisson bracket in a suitable sense, which can be used to prove the isomorphism theorem without appealing to Procesi bundles, see [42, Section 3] for details.

  2. 2.

    After this survey was written, I have established a shift equivalence for general symplectic reflection groups, [44]. The proof follows the scheme outlined in this section: Procesi bundles on symplectic resolutions are replaced with their generalizations, Procesi sheaves on \(\mathbb {Q}\)-factorial terminalizations.

  3. 3.

    The case of general complex reflection groups was done in [43] after this survey was written using different techniques.

References

  1. Bardsley, P., Richardson, R.W.: Étale slices for algebraic transformation groups in characteristic \(p\). Proc. Lond. Math. Soc. 51(3), 295–317 (1985)

    Google Scholar 

  2. Bayen, F., Flato, M., Fronsdal, C., Lichnerowitz, A., Sternheimer, D.: Deformation theory and quantization. Ann. Phys. 111, 61–110 (1978)

    Google Scholar 

  3. Beilinson, A., Bernstein, J.: Localisation de \(\mathfrak{g}\)-modules. C. R. Acad. Sci. Paris Ser. I Math. 292(1), 15–18 (1981)

    Google Scholar 

  4. Bellamy, G., Schedler, T.: A new linear quotient of \(\mathbb{C}^4\) admitting a symplectic resolution. Math. Z. 273(3–4), 753–769 (2013)

    Google Scholar 

  5. Bellamy, G.: On singular Calogero-Moser spaces. Bull. Lond. Math. Soc. 41(2), 315–326 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bezrukavnikov, R., Etingof, P.: Parabolic induction and restriction functors for rational Cherednik algebras. Selecta Math. 14, 397–425 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bezrukavnikov, R., Finkelberg, M., Ginzburg, V.: Cherednik algebras and Hilbert schemes in characteristic \(p\). With an appendix by Pavel Etingof. Represent. Theory 10, 254–298 (2006)

    Article  Google Scholar 

  8. Bezrukavnikov, R., Finkelberg, M.: Wreath Macdonald polynomials and categorical McKay correspondence. Camb. J. Math. 2(2), 163–190 (2014)

    Google Scholar 

  9. Bezrukavnikov, R., Kaledin, D.: Fedosov quantization in positive characteristic. J. Am. Math. Soc. 21(2), 409–438 (2008)

    Article  MathSciNet  Google Scholar 

  10. Bezrukavnikov, R., Kaledin, D.: Fedosov quantization in the algebraic context. Moscow Math. J. 4, 559–592 (2004)

    Google Scholar 

  11. Bezrukavnikov, R.V., Kaledin, D.B.: McKay equivalence for symplectic quotient singularities. Proc. Steklov Inst. Math. 246, 13–33 (2004). With erratum in [BF]

    Google Scholar 

  12. Bezrukavnikov, R., Losev, I.: Etingof conjecture for quantized quiver varieties. arXiv:1309.1716

  13. Bondal, A., Orlov, D.: Derived categories of coherent sheaves. In: Proceedings of the International Congress of Mathematicians, Vol. II, pp. 47–56. Higher Ed. Press, Beijing (2002)

    Google Scholar 

  14. Boyarchenko, M.: Quantization of minimal resolutions of Kleinian singularities. Adv. Math. 211(1), 244–265 (2007)

    Article  MathSciNet  Google Scholar 

  15. Braden, T., Licata, A., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions II: category O and symplectic duality. Astérisque 384, 75–179 (2016)

    Google Scholar 

  16. Braden, T., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions I: local and global structure. Astérisque 384, 1–73 (2016)

    Google Scholar 

  17. Crawley-Boevey, W., Holland, M.: Noncommutative deformations of Kleinian singularities. Duke Math. J. 92, 605–635 (1998)

    Article  MathSciNet  Google Scholar 

  18. Crawley-Boevey, W.: Geometry of the moment map for representations of quivers. Comp. Math. 126, 257–293 (2001)

    Google Scholar 

  19. Crawley-Boevey, W.: Normality of Marsden-Weinstein reductions for representations of quivers. Math. Ann. 325(1), 55–79 (2003)

    Article  MathSciNet  Google Scholar 

  20. Etingof, P., Gan, W.L., Ginzburg, V., Oblomkov, A.: Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products. Publ. Math. IHES 105, 91–155 (2007)

    Article  MathSciNet  Google Scholar 

  21. Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147(N2), 243–348 (2002)

    Article  MathSciNet  Google Scholar 

  22. Etingof, P.: Symplectic reflection algebras and affine Lie algebras. Mosc. Math. J. 12, 543–565 (2012)

    Google Scholar 

  23. Gan, W.L., Ginzburg, V.: Quantization of Slodowy slices. IMRN 5, 243–255 (2002)

    Google Scholar 

  24. Ginzburg, V., Guay, N., Opdam, E., Rouquier, R.: On the category \(\cal{O}\) for rational Cherednik algebras. Invent. Math. 154, 617–651 (2003)

    Article  MathSciNet  Google Scholar 

  25. Gordon, I., Losev, I.: On category \(\cal{O}\) for cyclotomic rational Cherednik algebras. J. Eur. Math. Soc. 16, 1017–1079 (2014)

    Article  MathSciNet  Google Scholar 

  26. Gordon, I., Stafford, T.: Rational Cherednik algebras and Hilbert schemes. Adv. Math. 198(1), 222–274 (2005)

    Article  MathSciNet  Google Scholar 

  27. Gordon, I.: A remark on rational Cherednik algebras and differential operators on the cyclic quiver. Glasg. Math. J. 48, 145–160 (2006)

    Article  MathSciNet  Google Scholar 

  28. Gordon, I.: Baby Verma modules for rational Cherednik algebras. Bull. Lond. Math. Soc. 35(3), 321–336 (2003)

    Article  MathSciNet  Google Scholar 

  29. Gordon, I.: Macdonald positivity via the Harish-Chandra D-module. Invent. Math. 187(3), 637–643 (2012)

    Article  MathSciNet  Google Scholar 

  30. Gordon, I.: Quiver varieties, category O for rational Cherednik algebras, and Hecke algebras. Int. Math. Res. Pap. IMRP, Art. ID rpn006 (3), 69 (2008)

    Google Scholar 

  31. Griffeth, S.: Orthogonal functions generalizing Jack polynomials. Trans. Am. Math. Soc. 362, 6131–6157 (2010)

    Article  MathSciNet  Google Scholar 

  32. Haboush, W.: Reductive groups are geometrically reductive. Ann. of Math. (2) 102(1), 67–83 (1975)

    Article  MathSciNet  Google Scholar 

  33. Haiman, M.: Combinatorics, Symmetric Functions, and Hilbert Schemes. Current developments in mathematics, 2002, pp. 39–111. International Press, Somerville (2002)

    Google Scholar 

  34. Haiman, M.: Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (2001)

    Google Scholar 

  35. Holland, M.: Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers. Ann. Sci. Ec. Norm. Super. IV Ser. 32, 813–834 (1999)

    Article  MathSciNet  Google Scholar 

  36. Kaledin, D., Verbitsky, M.: Period map for non-compact holomorphically symplectic manifolds. Geom. Funct. Anal. 12(6), 1265–1295 (2002)

    Article  MathSciNet  Google Scholar 

  37. Kaledin, D.: Symplectic singularities from the Poisson point of view. J. Reine Angew. Math. 600, 135–156 (2006)

    Google Scholar 

  38. Kapranov, M., Vasserot, E.: Kleinian singularities, derived categories and Hall algebras. Math. Ann. 316, 565–576 (2000)

    Article  MathSciNet  Google Scholar 

  39. Kashiwara, M., Rouquier, R.: Microlocalization of rational Cherednik algebras. Duke Math. J. 144, 525–573 (2008)

    Article  MathSciNet  Google Scholar 

  40. Losev, I.: Abelian localization for cyclotomic Cherednik algebras. Int. Math. Res. Not. 2015, 8860–8873 (2015)

    Article  MathSciNet  Google Scholar 

  41. Losev, I.: Completions of symplectic reflection algebras. Selecta Math. 18(N1), 179–251 (2012)

    Article  MathSciNet  Google Scholar 

  42. Losev, I.: Deformations of symplectic singularities and Orbit method for semisimple Lie algebras. arXiv:1605.00592

  43. Losev, I.: Derived equivalences for Rational Cherednik algebras. Duke Math J. 166(N1), 27–73 (2017)

    Article  MathSciNet  Google Scholar 

  44. Losev, I.: Derived equivalences for Symplectic reflection algebras. arXiv:1704.05144

  45. Losev, I.: Isomorphisms of quantizations via quantization of resolutions. Adv. Math. 231, 1216–1270 (2012)

    Article  MathSciNet  Google Scholar 

  46. Losev, I.: On Procesi bundles. Math. Ann. 359(N3), 729–744 (2014)

    Article  MathSciNet  Google Scholar 

  47. Losev. I.: Finite dimensional representations of W-algebras. Duke Math J. 159(1), 99–143 (2011)

    Google Scholar 

  48. Maffei, A.: A remark on quiver varieties and Weyl groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1, 649–689 (2002)

    Google Scholar 

  49. McGerty, K., Nevins, T.: Derived equivalence for quantum symplectic resolutions. Selecta Math. 20, 675–717 (2014)

    Article  MathSciNet  Google Scholar 

  50. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 3rd edn, vol. 34. Springer, Berlin (1994)

    Google Scholar 

  51. Nakajima, H.: Instantons on ALE spaces, quiver varieties and Kac-Moody algebras. Duke Math. J. 76, 365–416 (1994)

    Article  MathSciNet  Google Scholar 

  52. Nakajima, H.: Jack polynomials and Hilbert schemes of points on surfaces. arXiv:alg-geom/9610021

  53. Nakajima, H.: Lectures on Hilbert schemes of points on surfaces. University lecture series 18. AMS (1999)

    Google Scholar 

  54. Nakajima, H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515–560 (1998)

    Article  MathSciNet  Google Scholar 

  55. Namikawa, Y.: Poisson deformations of affinne symplectic varieties, II. Kyoto J. Math. 50(4), 727–752 (2010)

    Article  MathSciNet  Google Scholar 

  56. Oblomkov, A.: Deformed Harish-Chandra homomorphism for the cyclic quiver. Math. Res. Lett. 14, 359–372 (2007)

    Article  MathSciNet  Google Scholar 

  57. Popov, V.L., Vinberg, E.B.: Invariant theory. Itogi nauki i techniki. Sovr. Probl. Matem. Fund. Napr. 55, 137–309 (1989). Moscow, VINITI (in Russian). English translation in: Algebraic geometry 4, Encyclopaedia Math. Sci. 55. Springer, Berlin (1994)

    Google Scholar 

  58. Rouquier, R.: \(q\)- Schur algebras for complex reflection groups. Mosc. Math. J. 8, 119–158 (2008)

    Google Scholar 

  59. Sumihiro, H.: Equivariant completion. J. Math. Kyoto Univ. 14, 1–28 (1976)

    Article  MathSciNet  Google Scholar 

  60. van den Bergh, M.: Non-commutative crepant resolutions. In: The legacy of Niels Henrik Abel, pp. 749–770. Springer, Berlin (2002)

    Google Scholar 

  61. Vologodsky, V.: Appendix to [BF]

    Google Scholar 

Download references

Acknowledgements

This survey is a greatly expanded version of lectures I gave at Northwestern in May 2012. I would like to thank Roman Bezrukavnikov and Iain Gordon for numerous stimulating discussions. My work was supported by the NSF under Grant DMS-1161584.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Losev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Losev, I. (2018). Procesi Bundles and Symplectic Reflection Algebras. In: Hitrik, M., Tamarkin, D., Tsygan, B., Zelditch, S. (eds) Algebraic and Analytic Microlocal Analysis. AAMA 2013. Springer Proceedings in Mathematics & Statistics, vol 269. Springer, Cham. https://doi.org/10.1007/978-3-030-01588-6_1

Download citation

Publish with us

Policies and ethics