Skip to main content

AutoModel: A Client-Server Tool for Intuitive and Interactive Homology Modeling of Protein-Ligand Complexes

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2018)

Abstract

The protein tertiary structure prediction is not a simple task but the assessment of this information becomes essential for functional annotation. Computer protein structure prediction is an important tool in structural biology helping to construct large quantity of interaction model of protein complexes or used to obtain three-dimensional structure and functional information of non-crystalizing proteins. However, the complexity of modeling softwares and a hard-to-use user interface makes it difficult the use for non-expert scientists. On this context, semi-automatic client-server software for protein homology modeling was developed, the AutoModel. The main goal of AutoModel is to provide a graphical, intuitive, interactive and practical interface to perform modeling experiments in a distributed architecture, with the possibility of importing water and ligand structural information from pdb templates, intended for easy modeling of different protein-ligand complexes. Our system facilitates the new users interaction with the modeling pipeline as it follows: 1. Searching structural templates; 2. Sequences Alignment; 3. Protein modelling; 4. Model refinement and 5. Loops refinement. In AutoModel 0.5 development we evaluated the use of different alignment tools in order to increase the quality of generated models, reduce the computational cost, and evaluate the impact of these changes in modeling quality and the experimentation speed. Our data suggest that using Muscle as alignment tool in the pipeline increases the quality of obtained models if compared to the other tested releases with significantly lower computational costs, which is always interesting in a distributed system running on a central server as AutoModel. “AutoModel Server” and “AutoModel Client” packages are available for Linux users through pypi package index. AutoModel is also freely available for academic community “as is” in http://biocomp.uenf.br.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodwell, V., Bender, D., Botham, K.M., Kennelly, P.J., Weil, P.A.: Harpers Illustrated Biochemistry, 30th edn. McGraw Hill Professional, New York (2015)

    Google Scholar 

  2. Hillisch, A., Pineda, L.F., Hilgenfeld, R.: Utility of homology models in the drug discovery process. Drug Discov. Today 9, 659–669 (2004)

    Article  Google Scholar 

  3. Sliwoski, G., Kothiwale, S., Meiler, J., Lowe, E.W.: Computational methods in drug discovery. Pharmacol. Rev. 66, 334–395 (2014)

    Article  Google Scholar 

  4. Schmidt, T., Bergner, A., Schwede, T.: Modelling three-dimensional protein structures for applications in drug design. Drug Discov. Today 19, 890–897 (2014)

    Article  Google Scholar 

  5. Tang, M., et al.: High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J. Biomol. NMR 51, 227–233 (2011)

    Article  Google Scholar 

  6. Krieger, E., Nabuurs, S.B., Vriend, G.: Homology modeling. Methods Biochem. Anal. 44, 509–524 (2003)

    Google Scholar 

  7. Zhang, Y.: Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins Struct. Funct. Bioinform. 82, 175–187 (2014)

    Article  Google Scholar 

  8. Roy, A., Kucukural, A., Zhang, Y.: I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010)

    Article  Google Scholar 

  9. RosettaCommons. https://www.rosettacommons.org/

  10. CASP12. http://www.predictioncenter.org/casp12/

  11. Conchúir, S.Ó., et al.: A web resource for standardized benchmark datasets, metrics, and Rosetta protocols for macromolecular modeling and design. PLoS ONE 10, e0130433 (2015)

    Article  Google Scholar 

  12. Webb, B., Sali, A.: Protein structure modeling with MODELLER. In: Kaufmann, M., Klinger, C., Savelsbergh, A. (eds.) Functional Genomics, vol. 1654, pp. 39–54. Springer, Heidelberg (2017)

    Chapter  Google Scholar 

  13. Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M., Pieper, U., Sali, A.: Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinform. 15, 5–6 (2006)

    Article  Google Scholar 

  14. Webb, B., Sali, A.: Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinform. 47, 5–6 (2014)

    Article  Google Scholar 

  15. Finn, R.D., Clements, J., Eddy, S.R.: HMMER web server: interactive sequence similarity searching. Nucl. Acids Res. 39, gkr367 (2011)

    Article  Google Scholar 

  16. Larkin, M.A., et al.: Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)

    Article  Google Scholar 

  17. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M.: PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993)

    Article  Google Scholar 

  18. Schrödinger. https://www.schrodinger.com/. Accessed 19 Aug 2018

  19. Certara – Certara is the leading drug development consultancy with solutions spanning the discovery, preclinical and clinical stages of drug development. https://www.certara.com/

  20. Schwede, T., Kopp, J., Guex, N., Peitsch, M.C.: SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003)

    Article  Google Scholar 

  21. MHOLline. http://www.mholline.lncc.br/

  22. Lambert, C., Léonard, N., De Bolle, X., Depiereux, E.: ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18, 1250–1256 (2002)

    Article  Google Scholar 

  23. Fiser, A., Do, R.K.G., Šali, A.: Modeling of loops in protein structures. Protein Sci. 9, 1753–1773 (2000)

    Article  Google Scholar 

  24. Marti-Renom, M.A., Madhusudhan, M.S., Sali, A.: Alignment of protein sequences by their profiles. Protein Sci. 13, 1071–1087 (2004)

    Article  Google Scholar 

  25. Cock, P.J.A., et al.: Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009)

    Article  Google Scholar 

  26. RPyC - Transparent, Symmetric Distributed Computing. https://rpyc.readthedocs.io/en/latest/

  27. Talbot, H.: wxPython, a GUI Toolkit. Linux J. 2000, 5 (2000)

    Google Scholar 

  28. Shen, M.: Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524 (2006)

    Article  Google Scholar 

  29. Kelly, C.A., Nishiyama, M., Ohnishi, Y., Beppu, T., Birktoft, J.J.: Determinants of protein thermostability observed in the 1.9-. ANG. crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. Biochemistry 32, 3913–3922 (1993)

    Article  Google Scholar 

  30. Wu, G., Fiser, A., Ter Kuile, B., Šali, A., Müller, M.: Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc. Natl. Acad. Sci. 96, 6285–6290 (1999)

    Article  Google Scholar 

  31. Šali, A.: Tutorial (2008)

    Google Scholar 

  32. Maruyama, N., Maruyama, Y., Tsuruki, T., Okuda, E., Yoshikawa, M., Utsumi, S.: Creation of soybean β-conglycinin β with strong phagocytosis-stimulating activity. Biochim Biophys Acta (BBA)-Proteins. Proteomics 1648, 99–104 (2003)

    Google Scholar 

  33. Wiederstein, M., Sippl, M.J.: ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl. Acids Res. 35, W407–W410 (2007)

    Article  Google Scholar 

  34. DeLano, W.L.: The PyMOL molecular graphics system (2002)

    Google Scholar 

  35. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by E-26/110.216/2011 FAPERJ grant for J.H.F. and FAPERJ master degree grant for J.de A.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge H. Fernandez .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 537 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de A. Filho, J.L., del Real Tamariz, A., Fernandez, J.H. (2018). AutoModel: A Client-Server Tool for Intuitive and Interactive Homology Modeling of Protein-Ligand Complexes. In: Alves, R. (eds) Advances in Bioinformatics and Computational Biology. BSB 2018. Lecture Notes in Computer Science(), vol 11228. Springer, Cham. https://doi.org/10.1007/978-3-030-01722-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01722-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01721-7

  • Online ISBN: 978-3-030-01722-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics