Skip to main content

Insights into Insect Resistance in Pulse Crops: Problems and Preventions

  • Chapter
  • First Online:
Pulse Improvement

Abstract

Globally, insect pests cause considerable damage to pulse crops. Hence developing broad-spectrum resistance against insect pests has been a major challenge to pulse growers and scientists. Traditionally, cultural practices and synthetic insecticides are being utilized for effective control of insect pests since ages. Apart from these, other strategies such as host plant resistance, insect-resistant transgenic crops, and IPM are also being used to manage the infestation in pulse crops. Though screening of genetic resources for insect resistance has been promising in some pulse crops, fertility barriers and linkage drag minimize the effective utilization of identified resistance in commercially viable crop breeding programs. In parallel, insect-resistant transgenic plants have been developed using various insecticidal proteins from various sources including Bacillus thuringiensis endotoxin, plant protease inhibitors, chitinases, alpha-amylase inhibitors, secondary metabolites, and vegetative insecticidal proteins (VIPs). Deploying transgenic plants with high levels of toxin expression by gene pyramiding is another practical option to delay the resistance development in insects. Nevertheless, the success achieved so far in managing insect pests is limited mainly due to the complex mechanisms underlying the defense strategies together with the lack of precision in screening techniques. Here, we discuss the recent progress and current status of studies toward developing resistance to the most common insect pests of pulses. This chapter points the lack of detailed molecular studies exploring the insect resistance that can advance our knowledge on plant resistance mechanisms and the genes involved. Therefore, a step forward now will be on exploiting natural variations with novel technologies in combination of eco-safe management practices to develop durable insect-resistant pulse crops. Despite technical and regulatory difficulties, developing insect resistance should be the major priority area for future breeding and genetic engineering studies aiming at pulse crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharjee S, Sarmah BK, Kumar PA, Olsen K, Mahon R, Moar WJ et al (2010) Transgenic chickpeas (Cicer arietinum L.) expressing a sequence-modified cry2Aa gene. Plant Sci 178(3):333–339

    Article  CAS  Google Scholar 

  • Adesoye A, Machuka J, Togun A (2008) CRY 1AB trangenic cowpea obtained by nodal electroporation. Afr J Biotechnol 7(18):3200–3210

    CAS  Google Scholar 

  • Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17(5):293–302

    Article  CAS  PubMed  Google Scholar 

  • Annis B, O’Keeffe LE (1984) Response of two Lathyrus species to infestation by the pea weevil Bruchus pisorum L.(Coleoptera: Bruchidae). Entomol Exp Appl 35(1):83–87

    Article  Google Scholar 

  • Asharani BM, Ganeshaiah KN, Kumar ARV, Makarla U (2011) Transformation of chickpea lines with Cry1X using in plantatransformation and characterization of putative transformants T1lines for molecular and biochemical characters. J Plant Breed Crop Sci 3:16413–16423

    Article  CAS  Google Scholar 

  • Asif M, Rooney LW, Ali R, Riaz MN (2013) Application and opportunities of pulses in food system – a review. Crit Rev Food Sci Nutr 53:1168–1179

    Article  CAS  PubMed  Google Scholar 

  • Bakhsh A, Rao AQ, Shahid AA, Husnain T, Riazuddin S (2009) Insect resistance and risk assessment studies in advance lines of Bt cotton harboring Cry1Ac and Cry2A genes. Am Eurasian J Agric Environ Sci 6(1):1–11

    CAS  Google Scholar 

  • Bakhsh A, Khabbazi SD, Baloch FS, Demirel U, ÇaliÅŸkan ME, HatipoÄŸlu R et al (2015) Insect-resistant transgenic crops: retrospect and challenges. Turk J Agric For 39(4):531–548

    Article  CAS  Google Scholar 

  • Baksh A (2003) Potential adverse health effects of genetically modified crops. J Toxicol Environ Health B Crit Rev 6:211–225

    Article  Google Scholar 

  • Bardner R, Fletcher KE (1974) Insect infestations and their effects on the growth and yield of field crops: a review. Bull Entomol Res 64(1):141–160

    Article  Google Scholar 

  • Beena MR, Tuli R, Gupta AD, Kirti PB (2008) Transgenic peanut (Arachis hypogaea L.) plants expressing cry1EC and rice chitinase cDNA (Chi11) exhibit resistance against insect pest Spodoptera litura and fungal pathogen Phaeoisariopsis personata. Trans Plant J 2:157–164

    Google Scholar 

  • Bhatnagar VS, Sithanantham S, Pawar CS, Jadhav D, Rao VR, Reed W (1983) Conservation and augmentation of natural enemies with reference to integrated pest management in chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan (L.) Millsp). In: Proc International workshop on Integrated Pest Control in Grain legumes. Goiana, Brazil, pp. 157–180

    Google Scholar 

  • Bhatnagar-Mathur P, Sharma KK (2016) Genetic transformation of pigeonpea: an overview. Legum Perspect 11:35–36

    Google Scholar 

  • Bhushan S, Singh RP, Shanker R (2011) Bioefficacy of neem and Bt against pod borer, Helicoverpa armigera in chickpea. J Biopest 4(1):87–89

    Google Scholar 

  • Blair MW, Muñoz C, Buendía HF, Flower J, Bueno JM, Cardona C (2010) Genetic mapping of microsatellite markers around the arcelin bruchid resistance locus in common bean. Theor Appl Genet 121(2):393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boethel DJ (1999) Assessment of soybean germplasm for multiple insect resistance. In: Global plant genetic resources for insect-resistant crops. CRC, Boca Raton, pp 101–129

    Google Scholar 

  • Bruce TJ (2014) Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J Exp Bot 66(2):455–465

    Article  PubMed  CAS  Google Scholar 

  • Byrne O, Galwey N, Hardie D (2002) Searching for molecular markers for resistance to pea weevil. In: JA MC (ed) Plant breeding for the 11th milennium: proceedings of the 12th Australasian plant breeding conference. Australian Plant Breeding Association, Perth, pp 62–366

    Google Scholar 

  • Cao J, Ibrahim H, Garcia J, Mason H, Granados R, Earle E (2002) Transgenic tobacco plants carrying a baculovirus enhancin gene slow the development and increase the mortality of Trichoplusia ni larvae. Plant Cell Rep 21(3):244–250

    Article  CAS  Google Scholar 

  • Cardona C, Kornegay J (1999) Bean germplasm resources for insect resistance. In: Clement SL, Quisenberry SS (eds) Global plant genetic resources for insect-resistant crops. CRC Press LLC, Boca Raton, pp 85–100

    Google Scholar 

  • Carrillo E, Rubiales D, Pérez-de-Luque A, Fondevilla S (2013) Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp. Eur J Plant Pathol 135(4):761–769

    Article  CAS  Google Scholar 

  • Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present, or future? Annu Rev Entomol 43(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18(4):529–544

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty J, Sen S, Ghosh P, Sengupta A, Basu D, Das S (2016) Homologous promoter derived constitutive and chloroplast targeted expression of synthetic cry1Ac in transgenic chickpea confers resistance against Helicoverpa armigera. Plant Cell Tissue Organ Cult (PCTOC) 125(3):521–535

    Article  CAS  Google Scholar 

  • Charity JA, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (1999) Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Mol Breed 5(4):357–365

    Article  CAS  Google Scholar 

  • Chaudhary RG, Saxena H, Dhar V, Prajapati RK (2008) Evaluation and validation of IPM modules against wilt, Phytophthora blight, pod borer and pod fly in pigeonpea. J Food Legum 21:58–60

    Google Scholar 

  • Chavan AP, Patil SK, Deshmukh GP, Pawar KB, Brahmane RO, Harar PN (2009) Sources of resistance to pigeonpea pod borers. In: International conference on grain legumes: quality improvement, value addition and trade. Indian Institute of Pulses Research, Kanpur, pp 256–257

    Google Scholar 

  • Chen KC, Lin CY, Kuan CC, Sung HY, Chen CS (2002a) A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem 50(25):7258–7263

    Article  CAS  PubMed  Google Scholar 

  • Chen JW, Tang LX, Tang MJ, Shi YX, Pang Y (2002b) Cloning and expression product of vip3A gene from Bacillus thuringiensis and analysis of inseceicidal activity. Sheng wu gong cheng xue bao. Chin J Biotechnol 18(6):687–692

    CAS  Google Scholar 

  • Chen HM, Liu CA, Kuo CG, Chien CM, Sun HC, Huang CC et al (2007) Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in mungbean. Euphytica 157(1–2):113–122

    Article  CAS  Google Scholar 

  • Cherry AJ, Rabindra RJ, Parnell MA, Geetha N, Kennedy JS, Grzywacz D (2000) Field evaluation of Helicoverpaarmigeranucleopolyhedrovirus formulations for control of the chickpea pod-borer, H. armigera (Hubn.), on chickpea (Cicer arietinum var. Shoba) in southern India. Crop Prot 19(1):51–60

    Article  Google Scholar 

  • Chiang HS, Norris DM (1983) Morphological and physiological parameters of soybean resistance to agromyzid beanflies. Environ Entomol 12(1):260–265

    Article  Google Scholar 

  • Chiang HS, Singh SR (1988) Pod hairs as a factor in Vigna vexillata resistance to the pod-sucking bug, Clavigralla tomentosicollis. Entomol Exp Appl 47(2):195–199

    Article  Google Scholar 

  • Chowrira GM, Akella V, Fuerst PE, Lurquin PF (1996) Transgenic grain legumes obtained byin planta electroporation-mediated gene transfer. Mol Biotechnol 5(2):85–96

    Article  CAS  PubMed  Google Scholar 

  • Clement SL, Quisenberry SS (eds) (1999) Global plant genetic resources for insect-resistant crops. CRC Press, Boca Raton, p 295

    Google Scholar 

  • Clement SL, El-Din NEDS, Weigand S, Lateef SS (1993) Research achievements in plant resistance to insect pests of cool season food legumes. Euphytica 73(1–2):41–50

    Article  Google Scholar 

  • Clement SL, Wightman JA, Hardie DC, Bailey P, Baker G, McDonald G (2000) Opportunities for integrated management of insect pests of grain legumes. In: Linking research and marketing opportunities for pulses in the 21st century. Springer, Dordrecht, pp 467–480

    Chapter  Google Scholar 

  • Constabel CP, Yip L, Patton JJ, Christopher ME (2000) Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol 124(1):285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahiya SS, Chauhan YS, Johansen C, Shanower TG (1999) Adjusting pigeonpea sowing time to manage pod borer infestation. Int Chickpea Newsl 6:44–45

    Google Scholar 

  • Das SB (1998) Impact of intercropping on Helicoverpa armigera (hub.): incidence and crop yield of chickpea in west Nimar valley of Madhya Pradesh. Insect Environ 4:84–85

    Google Scholar 

  • Das A, Datta S, Thakur S, Shukla A, Ansari J, Sujayanand GK, Singh NP (2017) Expression of a chimeric gene encoding insecticidal crystal protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner.). Front Plant Sci 8:1423

    Article  PubMed  PubMed Central  Google Scholar 

  • Dayal S, Lavanya M, Devi P, Sharma KK (2003) An efficient protocol for shoot regeneration and genetic transformation of pigeonpea [Cajanus cajan (L.) Millsp.] using leaf explants. Plant Cell Rep 21(11):1072–1079

    Article  CAS  PubMed  Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393(6685):570

    Article  Google Scholar 

  • Dhaliwal GS, Dhaliwal GS (1993) Advances in host plant resistance to insects. Klayan Publishers, New Delhi

    Google Scholar 

  • Dicke M (1999) Direct and indirect effects of plants on performance of beneficial organisms. In: Handbook of pest management. Marcel Dekker, New York/Basel, pp 105–153

    Google Scholar 

  • Dodia DA, Patel AJ, Patel IS, Dhulia FK, Tikka SBS (1996) Antibiotic effect of pigeonpea wild relatives on Helicoverpa armigera. Int Chickpea Pigeonpea Newsl 3:100–101

    Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58(5):659–668

    Article  CAS  PubMed  Google Scholar 

  • Edwards OR (2001) Interspecific and intraspecific variation in the performance of three pest aphid species on five grain legume hosts. Entomol Exp Appl 100(1):21–30

    Article  Google Scholar 

  • Edwards OR, Ridsdill-Smith TJ, Berlandier FA (2003) Aphids do not avoid resistance in Australian lupin (Lupinus angustifolius, L. luteus) varieties. Bull Entomol Res 93(5):403–411

    Article  CAS  PubMed  Google Scholar 

  • Eizenberg H, Colquhoun J, Mallory-Smith C (2005) A predictive degree-days model for small broomrape (Orobanche minor) parasitism in red clover in Oregon. Weed Sci 53(1):37–40

    Article  CAS  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci 93(11):5389–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabre C, Causse H, Mourey L, Koninkx J, Rivière M, Hendriks H (1998) Characterization and sugar-binding properties of arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. cv. RAZ-2) seeds. Biochem J 329(3):551–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felton GW, Donato KK, Broadway RM, Duffey SS (1992) Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodoptera exigua. J Insect Physiol 38(4):277–285

    Article  CAS  Google Scholar 

  • Ganguly M, Molla KA, Karmakar S, Datta K, Datta SK (2014) Development of pod borer-resistant transgenic chickpea using a pod-specific and a constitutive promoter-driven fused cry1Ab/Ac gene. Theor Appl Genet 127(12):2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Ganiger PC (2000) Bioefficacy of newer insecticides against pod borer complex in pigeonpea Cajanuscajan L. MSc (Agri.) dissertation submitted to Marathwada Agricultural University, Parbhani, 66 pp

    Google Scholar 

  • Ghosh S, Azhahianambi P, Yadav MP (2007) Upcoming and future strategies of tick control: a review. J Vector Borne Dis 44(2):79

    CAS  PubMed  Google Scholar 

  • Giri AP, Kachole MS (1998) Amylase inhibitors of pigeonpea (Cajanus cajan) seeds. Phytochemistry 47(2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Gnanamurthy S, Dhanavel D (2014) Effect of EMS on induced morphological mutants and chromosomal variation in Cowpea (Vigna unguiculata (L.) Walp). Int Let Nat Sci 17 17:33–43

    Google Scholar 

  • Godfrey J (2000) Do genetically modified foods affect human health? Lancet 355:414

    Article  CAS  PubMed  Google Scholar 

  • Gopali JB, Sharma OP, Yelshetty S (2013) Effect of insecticides and biorationals against pod bug (Clavigralla gibbosa) in pigeonpea. Indian J Agric Sci 83(5):582–585

    CAS  Google Scholar 

  • Green PWC, Stevenson PC, Simmonds MSJ, Sharma HC (2002) Can larvae of the pod-borer, Helicoverpa armigera (Lepidoptera: Noctuidae), select between wild and cultivated pigeonpea Cajanus sp. (Fabaceae)? Bull Entomol Res 92(1):45–51

    Article  PubMed  Google Scholar 

  • Gujar GT, Kumari A, Kalia V, Chandrashekar K (2000) Spatial and temporal variation in susceptibility of the American bollworm, Helicoverpa armigera (Hubner) to Bacillus thuringiensis var. kurstaki in India. Curr Sci:995–1001

    Google Scholar 

  • Gulati A, Schryer P, McHughen A (2002) Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In Vitro Cell Dev Biol Plant 38(4):316–324

    Article  CAS  Google Scholar 

  • Gunning RV, Moores GD, Devonshire AL (1998) Insensitive acetylcholinesterase and resistance to organophosphates in Australian Helicoverpa armigera. Pestic Biochem Physiol 62(3):147–151

    Article  CAS  Google Scholar 

  • Harrison RL, Bonning BC (2001) Use of proteases to improve the insecticidal activity of baculoviruses. Biol Control 20(3):199–209

    Article  CAS  Google Scholar 

  • Heil M (2004) Induction of two indirect defences benefits Lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92(3):527–536

    Article  Google Scholar 

  • Higgins TJV, Gollasch S, Molvig L, Moore A, Popelka C, Armstrong J, Mahon R, Ehlers J, Huesing J, Margam V, Shade R (2012) Insect-protected cowpeas using gene technology. In: Fatokun C (ed) Innovative research along the cowpea value chain proceedings of fifth world cowpea conference on improving livelihood in the cowpea value chain through advancement in science. International Institute of Tropical Agriculture, Ibadan, pp 131–137

    Google Scholar 

  • Hilder V (2003) GM plants and protection against insects–alternative strategies based on gene technology. Acta Agric Scand (B) 53(S1):34–40

    Google Scholar 

  • Horber E (1978) Resistance of pests of grain legumes in the U.S.A. In: Singh SR, van HF E, Taylor TA (eds) Pests of grain legumes: ecology and control. Academic Press, London, UK, pp 281–295

    Google Scholar 

  • Huynh BL, Ehlers JD, Ndeve A, Wanamaker S, Lucas MR, Close TJ, Roberts PA (2015) Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Mol Breed 35(1):36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31(3):339–345

    Article  CAS  PubMed  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26(6):755–763

    Article  CAS  PubMed  Google Scholar 

  • Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor of common bean. Entomol Exp Appl 79(3):309–315

    Article  CAS  Google Scholar 

  • Jackai LEN, Oghiakhe S (1989) Pod wall trichomes and resistance of two wild cowpea, Vigna vexillata, accessions to Maruca testualis (Geyer) (Lepidoptera: Pyralidae) and Clavigralla tomentosicollis StÃ¥l (Hemiptera: Coreidae). Bull Entomol Res 79(4):595–605

    Article  Google Scholar 

  • Jayanand B, Sudarsanam G, Sharma KK (2003) An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro-germinated seedlings. In Vitro Cell Dev Biol Plant 39(2):171–179

    Article  Google Scholar 

  • Kamphuis LG, Lichtenzveig J, Peng K, Guo SM, Klingler JP, Siddique KH, Singh KB (2013a) Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula. J Exp Bot 64(16):5157–5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamphuis LG, Zulak K, Gao LL, Anderson J, Singh KB (2013b) Plant–aphid interactions with a focus on legumes. Funct Plant Biol 40(12):1271–1284

    Article  CAS  PubMed  Google Scholar 

  • Kaniuczak Z, Matosz I (1998) The effect of insecticidal seed dressings upon the broad bean weevil (Bruchus rufimanus Boh.) in the cultivation of the field bean. J Plant Prot Res 38:84–88

    Google Scholar 

  • Kant K, Kanaujia KR, Kanaujia S (2007) Role of plant density and abiotic factors on population dynamics of Helicoverpa armigera (Hübner) in Chick pea. Ann Plant Prot Sci 15(2):303–306

    Google Scholar 

  • Kaplan I, Dively GP, Denno RF (2009) The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes. Ecol Appl 19(4):864–872

    Article  PubMed  Google Scholar 

  • Kar S, Basu D, Das S, Ramkrishnan NA, Mukherjee P, Nayak P, Sen SK (1997) Expression of cryIA (c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Transgenic Res 6(2):177–185

    Article  CAS  Google Scholar 

  • Kareiva P, Sahakian R (1990) Tritrophic effects of a simple architectural mutation in pea plants. Nature 345(6274):433–434

    Article  Google Scholar 

  • Karungi J, Adipala E, Ogenga-Latigo MW, Kyamanywa S, Oyobo N (2000) Pest management in cowpea. Part 1. Influence of planting time and plant density on cowpea field pests infestation in eastern Uganda. Crop Prot 19(4):231–236

    Article  Google Scholar 

  • Keneni G, Bekele E, Getu E, Imtiaz M, Damte T, Mulatu B, Dagne K (2011) Breeding food legumes for resistance to storage insect pests: potential and limitations. Sustainability 3(9):1399–1415

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511):2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Khursheed S, Khan S (2016) Genetic improvement of two cultivars of Vicia faba L. using gammairradiation and ethyl methanesulphonate mutagenesis. Legum Res Int J 40(2):338–344

    Google Scholar 

  • Klingler JP, Nair RM, Edwards OR (2009) A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. J Exp Bot 60:4115–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koona P, Osisanya EO, Jackai LEN, Tamo M, Reeves J (2002) Pod surface characteristics in wild and cultivated Vigna species and resistance to the coreid bug Clavigralla tomentosicollis Stal. (Hemiptera: Coreidae). Int J Trop Insect Sci 22(1):1–7

    Article  Google Scholar 

  • Kostyukovsky M, Trostanetsky A (2006) The effect of a new chitin synthesis inhibitor, novaluron, on various developmental stages of Tribolium castaneum (Herbst). J Stored Prod Res 42(2):136–148

    Article  CAS  Google Scholar 

  • Kozgar I (2014) Mutation breeding in chickpea: perspectives and prospects for food security. Walter de Gruyter GmbH & Co KG, Warsaw

    Google Scholar 

  • Kumar J, Choudhury AK, Solanki RK, Pratap A (2011) Towards MAS in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kusnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM (2007) Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. J Exp Bot 58(10):2537–2552

    Article  CAS  PubMed  Google Scholar 

  • Lam WKF, Pedigo LP (2001) Effect of trichome density on soybean pod feeding by adult bean leaf beetles (Coleoptera: Chrysomelidae). J Econ Entomol 94(6):1459–1463

    Article  CAS  PubMed  Google Scholar 

  • Laskar RA, Khan S, Khursheed S, Raina A, Amin R (2015) Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. J Agron 14(3):102

    Article  CAS  Google Scholar 

  • Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5(1):5–6

    Article  Google Scholar 

  • Lepore LS, Roelvink PR, Granados RR (1996) Enhancin, the granulosis virus protein that facilitates nucleopolyhedrovirus (NPV) infections, is a metalloprotease. J Invertebr Pathol 68(2):131–140

    Article  CAS  PubMed  Google Scholar 

  • Logiswaran G, Mohanasundaram M (1985) Effect of inter-cropping, spacing and mulching in the control of groundnut leaf miner, Aproaerema modicella (Deventer) (Gelechiidae: Lepidoptera). Madras Agric J 72:695–700

    Google Scholar 

  • Lomash K, Bisht RS (2013) Population dynamics of Helicoverpa armigera (Hubner) on chickpea crop. Pantnagar J Res 11(1):35–38

    Google Scholar 

  • Malhotra RS, El-Bouhssini M, Joubi A (2007) Registration of seven improved chickpea breeding lines resistant to leaf miner. J Plant Regist 1(2):145–146

    Article  Google Scholar 

  • Maqbool SB, Riazuddin S, Loc NT, Gatehouse AM, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7(1):85–93

    Article  CAS  Google Scholar 

  • Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182(1):87–102

    Article  CAS  Google Scholar 

  • Michler, J. D., & Josephson, A. L. (2017). To specialize or diversify: agricultural diversity and poverty dynamics in Ethiopia. World Development, 89, 214–226.

    Article  Google Scholar 

  • Miklos JA, Alibhai MF, Bledig SA, Connor-Ward DC, Gao AG, Holmes BA, Kolacz KH, Kabuye VT, Macrae TC, Paradise MS, Toedebusch AS, Harrison LA (2007) Characterization of soybeanexhibiting high expression of a synthetic transgene that confers a high degreeof resistance to Lepidopteran pests. Crop Sci 47:148–157

    Article  CAS  Google Scholar 

  • Minja EM, Shanower TG, Silim SN, Karuru O (2000) Efficacy of different insecticides for pigeonpea pest management in Kenya. Int Chickpea Pigeonpea Newsl 7:53–55

    Google Scholar 

  • Mishra SK, Macedo MLR, Panda SK, Panigrahi J (2017) Bruchid pest management in pulses: past practices, present status and use of modern breeding tools for development of resistant varieties. Ann Appl Biol. https://doi.org/10.1111/aab.12401

    Article  Google Scholar 

  • Mithofer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  CAS  Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJ (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci 97(8):3820–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mota AC, DaMatta RA, Lima Filho M, Silva CP, Xavier-Filho J (2003) Cowpea (Vigna unguiculata) vicilins bind to the peritrophic membrane of larval sugarcane stalk borer (Diatraea saccharalis). J Insect Physiol 49(9):873–880

    Article  CAS  PubMed  Google Scholar 

  • Murfet IC (1971) Flowering in Pisum: reciprocal grafts between known genotypes. Aust J Biol Sci 24(4):1089–1102

    Article  Google Scholar 

  • Nagamani P, Viswanath K, Sharma OP, Bhagat S, Reddy PL (2013) Demonstration of IPM module for management of Helicoverpa armigera at village level. Ann Plant Prot Sci 21(2):432–434

    Google Scholar 

  • Nanda UK, Sasmal A, Mohanty SK (1996) Varietal reaction of pigeonpea to pod borer Helicoverpa armigera (Hubner) and modalities of resistance. Curr Agric Res 9:107–111

    Google Scholar 

  • Narvel JM, Walker DR, Rector BG, All JN, Parrott WA, Boerma HR (2001) A retrospective DNA marker assessment of the development of insect resistant soybean. Crop Sci 41(6):1931–1939

    Article  CAS  Google Scholar 

  • Nguyen NT, Borgemeister C, Poehling HM, Zimmermann G (2007) Laboratory investigations on the potential of entomopathogenic fungi for biocontrol of Helicoverpaarmigera (Lepidoptera: Noctuidae) larvae and pupae. Biocontrol Sci Tech 17(8):853–864

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Pandey SP, Srivastava S, Goel R, Lakhwani D, Singh P, Asif MH, Sane AP (2017) Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding. Sci Rep 7:44729

    Article  PubMed  PubMed Central  Google Scholar 

  • Parde VD, Sharma HC, Kachole MS (2012) Protease inhibitors in wild relatives of pigeonpea against the cotton bollworm/legume pod borer, Helicoverpa armigera. Am J Plant Sci 3:627–635

    Article  CAS  Google Scholar 

  • Patil A, Taware SP, Oak MD, Tamhankar SA, Rao VS (2007) Improvement of oil quality in soybean [Glycine max (L.) Merrill] by mutation breeding. J Am Oil Chem Soc 84(12):1117–1124

    Article  CAS  Google Scholar 

  • Pattar PS, Mansur CP, Alagundagi SC, Karbantanal SS (2012) Effect of intercropping systems on gram pod borer Helicoverpa armigera hubner and its natural enemies in chickpea. Indian J Entomol 74(2):136–141

    Google Scholar 

  • Petitt FL, Wietlisbach DO (1992) Intraspecific competition among same-aged larvae of Liriomyza sativae (Diptera: Agromyzidae) in lima bean primary leaves. Environ Entomol 21(1):136–140

    Article  Google Scholar 

  • Pompermayer P, Lopes AR, Terra WR, Parra JRP, Falco MC, Silva-Filho MC (2001) Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis. Entomolo Exp Appl 99(1):79–85

    Article  CAS  Google Scholar 

  • Popelka JC, Terryn N, Higgins TJV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167(2):195–206

    Article  CAS  Google Scholar 

  • Powell KS (2001) Antimetabolic effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserpina and Nilaparvata lugens. Entomol Exp Appl 99(1):71–78

    Article  CAS  Google Scholar 

  • Purcell JP, Greenplate JT, Jennings MG, Ryerse JS, Pershing JC, Sims SR et al (1993) Cholesterol oxidase: a potent insecticidal protein active against boll weevil larvae. Biochem Biophys Res Commun 196(3):1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Pusztai A, Bardocz GG, Alonso R, Chrispeels MJ, Schroeder HE, Tabe LM, Higgins TJ (1999) Expression of the insecticidal bean alpha-amylase inhibitor transgene has minimal detrimental effect on the nutritional value of peas fed to rats at 30% of the diet. J Nutr 129:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Qayum MA, Sanghi NK (1994). Red hairy caterpillar management through group action and non-pesticidal methods. Programme coordinated by ASW & Oxfarm (India) Trust

    Google Scholar 

  • Ramu SV, Rohini S, Keshavareddy G, Gowri Neelima M, Shanmugam NB, Kumar ARV, Udayakumar M (2012) Expression of a synthetic cry1AcF gene in transgenic Pigeon pea confers resistance to Helicoverpa armigera. J Appl Entomol 136(9):675–687

    Article  CAS  Google Scholar 

  • Ranga Rao GV, Rao VR (2010) Status of IPM in Indian agriculture: a need for better adoption. Indian J Plant Prot 38(2):115–121

    Google Scholar 

  • Ranga Rao GV, Wightman JA (1994) First annual Rabi/summer groundnut research workers. In: Group meeting held at Indian institute of Technology, Kharagpur, pp 12–15

    Google Scholar 

  • Ranjekar PK, Patankar A, Gupta V, Bhatnagar R, Bentur J, Kumar PA (2003) Genetic engineering of crop plants for insect resistance. Curr Sci 84(3):321–329

    Google Scholar 

  • Rao GR, Wightman JA, Rao DR (1991) The development of a standard pheromone trapping procedure for Spodoptera Iitura (F) (Lepidoptera: Noctuidae) population in groundnut (Arachis hyopogaea L) crops. Int J Pest Manag 37(1):37–40

    Google Scholar 

  • Ravindran BM (2016) Transgenic Pest resistance. Devagiri J Sci 2(1):1–31

    Google Scholar 

  • Reddy AA (2009) Pulses production technology: Status and way forward. Econ Polit Wkly 44:73–80

    Google Scholar 

  • Reddy NC, Singh Y, Dureja P, Singh SV (2001) Bioefficacy of insecticides, biopesticides and their combinations against podborers in pigeonpea. Indian J Entomol 63(2):137–143

    Google Scholar 

  • Rohini VK, Rao KS (2000) Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci 150(1):41–49

    Article  CAS  Google Scholar 

  • Romeis J, Shanower TG (1996) Arthropod natural enemies of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in India. Biocontrol Sci Tech 6(4):481–508

    Article  Google Scholar 

  • Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins TJ, Castillejo MA et al (2015) Achievements and challenges in legume breeding for pest and disease resistance. Crit Rev Plant Sci 34(1–3):195–236

    Article  CAS  Google Scholar 

  • Sahadia E, Aziz AE (2011) Control strategies of stored product pests. J Entomol 8:101–122

    Article  Google Scholar 

  • Sandhu S, Kang MS (2017) Advances in Breeding for Resistance to Insects. In: Arora R, Sandhu S (eds) Breeding Insect Resistant Crops for Sustainable Agriculture. Springer, Singapore, pp 67–99. https://doi.org/10.1007/978-981-10-6056-4_3

    Chapter  Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168(4):1135–1146

    Article  CAS  Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14(1):73–82

    Article  CAS  Google Scholar 

  • Schafleitner R, Huang SM, Chu SH, Yen JY, Lin CY, Yan MR, Krishnan B, Liu MS, Lo HF, Chen CY, Long-fang OC (2016) Identification of single nucleotide polymorphism markers associated with resistance to bruchids (Callosobruchus spp.) in wild mungbean (Vigna radiata var. sublobata) and cultivated V. radiata through genotyping by sequencing and quantitative trait locus analysis. BMC Plant Biol 16(1):159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoonhoven LM, Van Loon JJ, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJ (1995) Bean [alpha]-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107(4):1233–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/Technology 12:793–796

    CAS  Google Scholar 

  • Shanower TG, Romeis JMEM, Minja EM (1999) Insect pests of pigeonpea and their management. Annu Rev Entomol 44(1):77–96

    Article  CAS  PubMed  Google Scholar 

  • Sharma BC, Mann K, Kashyap SL, Pampapathy G, RidsdiIl-Smith J (2002) Identification of Helicoverpa resistance in wild species of chickpeas. In: McComb JA (ed) Plant breeding for the 11th millennium: proceedings of the 12th Australian plant breeding conference - 15–20 Sept 2002. Australian Plant Breeding Inc., Perth, pp 277–280

    Google Scholar 

  • Sharma HC, Pampapathy G, Dwivedi SL, Reddy LJ (2003) Mechanisms and diversity of resistance to insect pests in wild relatives of groundnut. J Econ Entomol 96(6):1886–1897

    Article  CAS  PubMed  Google Scholar 

  • Sharma HC, Varshney RK, Gaur PM, Gowda CLL (2008) Potential for using morphological, biochemical, and molecular markers for resistance to insect pests in grain legumes. J Food Legum 21(4):211–217

    Google Scholar 

  • Sharma HC, Dhillon MK, Bhatnagar-Mathur P, Sharma KK, Butterfield M (2010) Potential of transgenic grain legumes for pest management and sustainable crop production. In: Pests and pathogens: management strategies. BS Publications, Hyderabad, pp 135–158 ISBN 978-81-7800-227-9

    Google Scholar 

  • Sharma KK, Ortiz R (2000) Program for the application of genetic transformation for crop improvement in the semi-arid tropics. In Vitro Cell Dev Biol Plant 36(2):83–92

    Article  Google Scholar 

  • Sharma OP, Patange NR, Rachappa V, Venilla S (2016) Integrated disease and insect pest management for enhancing production of pulse crops. Indian J Genet Plant Breed 76(4):451–458

    Article  Google Scholar 

  • Shaw SS, Choudhary RK, Verma RS, Badaya AK, Mandloi KC (1999) Efficacy of some insecticidal mixture against bollworm complex of cotton under rainfed conditions. Shashya 6(1):71–74

    Google Scholar 

  • Shimoda T, Takabayashi J, Ashihara W, Takafuji A (1997) Response of predatory insect Scolothrips takahashii toward herbivore-induced plant volatiles under laboratory and field conditions. J Chem Ecol 23(8):2033–2048

    Article  CAS  Google Scholar 

  • Shinde YA, Patel BR, Mulekar VG (2013) Seasonal incidence of gram caterpillar, Helicoverpaarmigera (Hub.) in chickpea. Curr Biotica 7(1):2

    Google Scholar 

  • Singh SR, Emden HV (1979) Insect pests of grain legumes. Annu Rev Entomol 24(1):255–278

    Article  Google Scholar 

  • Singh KB, Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet 95(3):418–423

    Article  Google Scholar 

  • Singsit C, Adang MJ, Lynch RE, Anderson WF, Wang A, Cardineau G, Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cryIA (c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res 6(2):169–176

    Article  CAS  PubMed  Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27(12):1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131(3):892–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souframanien J, Gupta SK, Gopalakrishna T (2010) Identification of quantitative trait loci for bruchid (Callosobruchus maculatus) resistance in black gram [Vigna mungo (L.) Hepper]. Euphytica 176(3):349–356

    Article  Google Scholar 

  • Sousa-Majer MJD, Turner NC, Hardie DC, Morton RL, Lamont B, Higgins TJ (2004) Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific α-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. J Exp Bot 55(396):497–505

    Article  PubMed  Google Scholar 

  • Srinivasan A, Giri AP, Harsulkar AM, Gatehouse JA, Gupta VS (2005) Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpaarmigera) larvae. Plant Mol Biol 57(3):359–374

    Article  CAS  PubMed  Google Scholar 

  • Stam JM, Kroes A, Li Y, Gols R, van Loon JJ, Poelman EH, Dicke M (2014) Plant interactions with multiple insect herbivores: from community to genes. Annu Rev Plant Biol 65:689–713

    Article  CAS  PubMed  Google Scholar 

  • Stewart SA, Hodge S, Ismail N, Mansfield JW, Feys BJ, Prospéri JM, Powell G (2009) The RAP1 gene confers effective, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Mol Plant-Microbe Interact 22(12):1645–1655

    Article  CAS  PubMed  Google Scholar 

  • Surekha C, Beena MR, Arundhati A, Singh PK, Tuli R, Dutta-Gupta A, Kirti PB (2005) Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.)using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci 169(6):1074–1080

    Article  CAS  Google Scholar 

  • Sushil K, Chauhan R, Roshan L (2009) Evaluation of native strains of Bacillus thuringiensis var. kurstaki against Helicoverpaarmigera (Hübner) on pigeonpea. J Insect Sci (Ludhiana) 22(2):139–143

    Google Scholar 

  • Thomas JC, Wasmann CC, Echt C, Dunn RL, Bohnert HJ, McCoy TJ (1994) Introduction and expression of an insect proteinase inhibitor in alfalfa Medicago sativa L. Plant Cell Rep 14(1):31–36

    Article  CAS  PubMed  Google Scholar 

  • Thu TT, Mai TTX, Dewaele E, Farsi S, Tadesse Y, Angenon G, Jacobs M (2003) In vitro regeneration and transformation of pigeonpea [Cajanus cajan (L.) Millsp]. Mol Breed 11(2):159–168

    Article  CAS  Google Scholar 

  • Tohidfar M, Zare N, Jouzani GS, Eftekhari SM (2013) Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tissue Org Cult 113(2):227–235

    Article  CAS  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22(6):531–541

    Article  CAS  PubMed  Google Scholar 

  • Usharani KS, Kumar CA (2015) Mutagenic effects of gamma rays and EMS on frequency and spectrum of chlorophyll mutations in urdbean (Vigna mungo (L.) Hepper). Indian J Sci Technol 8(10):927–933

    Article  CAS  Google Scholar 

  • Valencia A, Bustillo AE, Ossa GE, Chrispeels MJ (2000) α-Amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochem Mol Biol 30(3):207–213

    Article  CAS  PubMed  Google Scholar 

  • Van der Westhuizen AJ, Qian XM, Botha AM (1998) Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Rep 18(1–2):132–137

    Article  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630

    Article  CAS  PubMed  Google Scholar 

  • Villareal JM, Hautea DM, Carpena AL (1998) Molecular mapping of the bruchid resistance gene in mungbean Vigna radiata L. Philipp J Crop Sci 23(Suppl. 1):1–9

    Google Scholar 

  • Visalakshmi V (2001) Effect of different IPM components on Helicoverpa armigera (Hubner) and their impact on natural enemies in chickpea. Doctoral dissertation, Acharya NG Ranga Agricultural University

    Google Scholar 

  • Walker DR, All JN, McPherson RM, Boerma HR, Parrott WA (2000) Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae). J Econ Entomol 93(3):613–622

    Article  CAS  PubMed  Google Scholar 

  • Walker D, Boerma HR, All J, Parrott W (2002) Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests. Mol Breed 9(1):43–51

    Article  CAS  Google Scholar 

  • Wang SF, Liu AY, Ridsdill-Smith TJ, Ghisalberti EL (2000) Role of alkaloids in resistance of yellow lupin to red-legged earth mite Halotydeus destructor. J Chem Ecol 26(2):429–441

    Article  CAS  Google Scholar 

  • Wang J, Song W, Zhang W, Liu C, Hu G, Chen Q (2009) Meta-analysis of insect-resistance QTLs in soybean. Hereditas 31:953–961

    Article  CAS  PubMed  Google Scholar 

  • Wani MR, Kozgar MI, Khan S, Ahanger MA, Ahmad P (2014) Induced mutagenesis for the improvement of pulse crops with special reference to mung bean: a review update. In: Improvement of crops in the era of climatic changes. Springer, New York, pp 247–288

    Chapter  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(10):1306–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • War AR, Paulraj MG, Hussain B, Buhroo AA, Ignacimuthu S, Sharma HC (2013) Effect of plant secondary metabolites on legume pod borer, Helicoverpa armigera. J Pest Sci 86(3):399–408

    Article  Google Scholar 

  • Yang G, Espelie KE, Todd JW, Culbreath AK, Pittman RN, Demski JW (1993) Cuticular lipids from wild and cultivated peanuts and the relative resistance of these peanut species to fall armyworm and thrips. J Agric Food Chem 41(5):814–818

    Article  CAS  Google Scholar 

  • Yang TJ, Kim DH, Kuo GC, Kumar L, Yong ND, Park HG (1998) RFLP marker-assisted selection in backcross breeding for introgression of the bruchid resistance gene in mungbean. Korean J Breed (Korea Republic) 30:8–15

    Google Scholar 

  • Yencho GC, Cohen MB, Byrne PF (2000) Applications of tagging and mapping insect resistance loci in plants. Annu Rev Entomol 45(1):393–422

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Cowgill SE, Wightman JA (1997) Roles of oxalic and malic acids in chickpea trichome exudate in host-plant resistance to Helicoverpa armigera. J Chem Ecol 23(4):1195–1210

    Article  CAS  Google Scholar 

  • Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21(12):1493–1497

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146(3):852–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a financial grant to PS through the INSPIRE Faculty Award (IFA12-LSPA-08) from the Department of Science and Technology, Government of India, and partial funding from the CGIAR Research Program on Grain Legumes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santisree Parankusam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parankusam, S., Katamreddy, S., Bommineni, P.R., Bhatnagar-Mathur, P., Sharma, K.K. (2018). Insights into Insect Resistance in Pulse Crops: Problems and Preventions. In: Wani, S., Jain, M. (eds) Pulse Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-01743-9_7

Download citation

Publish with us

Policies and ethics