Skip to main content

Part of the book series: Wireless Networks ((WN))

  • 481 Accesses

Abstract

The smartphones and smartphone-driven technologies have advanced at a relentless pace to a point where they now become an integral part of our everyday lives—a must-have tool that many simply cannot do without. The technology has progressed so far that the average smartphone people take for granted now holds more computing power than so-called supercomputers of the 1980s [1], men were even put on the moon with less computing power than we hold in our pockets today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. T. Nick, “A modern smartphone or a vintage supercomputer: which is more powerful,” PhoneArena.com, 14 Jun 2014. [Online]. Available: http://www.phonearena.com/news/A-modernsmartphone-or-a-vintage-supercomputer-which-is-more-powerful_id57149.

  2. N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, “A survey of mobile phone sensing,” IEEE Comm. Magazine, pp. 140-150, Sep. 2010.

    Google Scholar 

  3. P. M. Barrett and E. J. Topol, “Smartphone medicine,” IEEE Spotlight, pp. 52-54, IT Pro, May/Jun. 2016.

    Google Scholar 

  4. C.-Y. Chen, Y.-H. Chen, C.-F. Lin, C.-J. Weng, and H.-C. Chien, “A review of ubiquitous mobile sensing based on smartphone,” AUSMT, 4(1), pp. 13-18, Mar. 2014.

    Article  Google Scholar 

  5. S. K. Vashist, E. M. Schneider, and J. H. T. Luong, “Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management,” Diagnostics, 4, pp. 104-128, Apr. 2014.

    Article  Google Scholar 

  6. X. Xu, A. Akay, H. Wei, S. Wang, B. Pingguan-Murphy, B.-E. Erlandsson, X. Li, W. Lee, J. Hu, L. Wang, and F. Xu, “Advances in smartphone-based point-of-care diagnostics,” Proceedings of the IEEE, 103(2), pp. 236-247, Mar. 2015.

    Article  Google Scholar 

  7. A. Grünerbl, A. Muaremi, V. Osmani, G. Bahle, S. Öhler, G. Tröster, O. Mayora, C. Haring, and P. Lukowicz, “Smartphone-based recognition of states and state changes in bipolar disorder patients,” IEEE J. Biomed. Health Inform., 19(1), pp. 140-148, Jan. 2015.

    Article  Google Scholar 

  8. D. Lakens, “Using a smartphone to measure heart rate changes during relived happiness and anger,” IEEE Trans. Affective Computing, 4(2), pp. 238-241, Apr.-Jun. 2013.

    Article  Google Scholar 

  9. M.-Z. Poh, K. Kim, A. Goessling, N. Swenson, and R. Picard, “Cardiovascular monitoring using earphones and a mobile device,” IEEE Pervasive Computing, 11(4), pp. 18-26, Dec. 2012.

    Article  Google Scholar 

  10. W. Z. Khan, Y. Xiang, M. Y Aalsalem, and Q. Arshad, “Mobile phone sensing systems: a survey,” IEEE Comm. Surveys & Tutorials, 15(1), pp. 402-427, Jan. 2013.

    Article  Google Scholar 

  11. S. Yu, W. Xiao, Q. Fu, Z. Wu, C. Yao, H. Shen, and Y. Tang, “A portable chromium ion detection system based on a smartphone readout device,” Anal. Methods, 8(38), pp. 6877-6882, Oct. 2016.

    Article  Google Scholar 

  12. K. E. McCracken and J.-Y. Yoon, “Recent approaches for optical smartphone sensing in resource limited settings: a brief review,” Anal. Methods, 8(36), pp. 6591-6601, Sep. 2016.

    Article  Google Scholar 

  13. K. E. McCracken and J.-Y. Yoon, “Recent approaches for optical smartphone sensing in resource-limited settings: a brief review,” Anal. Methods, 8(36), pp. 6591-6601, Sep. 2016.

    Article  Google Scholar 

  14. Y. Intaravannea, S. Sumriddetchkajorn, and J. Nukeawa, “Cell phone-based two-dimensional spectral analysis for banana ripeness estimation” Sens. Actuat. B Chem., 168, pp. 390–394, Jun. 2012.

    Article  Google Scholar 

  15. S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, “Mobile-platform based colorimeter for monitoring chlorine concentration in water” Sens. Actuat. B Chem., 191, pp. 561–566, Feb. 2014.

    Article  Google Scholar 

  16. B. Cortazar, H. C. Koydemir, D. Tseng, S. Feng, and A. Ozcan, “Quantification of plant chlorophyll content using Google Glass,” Lab Chip, 15(7), pp. 1708-16,Apr. 2015.

    Article  Google Scholar 

  17. Ocean Control, VIC, Australia, Smartphone electromagnetic sensor, [Online]. Available: https://oceancontrols.com.au/ESS-002.html.

  18. Ocean Control, VIC, Australia, Smartphone UV sensor, [Online]. Available: https://oceancontrols.com.au/ESS-001.html.

  19. K. Yang, H. Peretz-Soroka, Y. Liu, and F. Lin, “Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones,” Lab Chip, 16(6), pp. 943-958, Mar. 2016

    Article  Google Scholar 

  20. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas, H. Sindi, and G. M. Whitesides, “Simple telemedicine for developing regions: Camera phone and paper based microfluidic devices for real-time, off-site diagnosis,” Anal. Chem., 80(10), pp. 3699-3707, Apr. 2008.

    Article  Google Scholar 

  21. H. Parastar and H. Shaye, “MVC app: A smartphone application for performing chemometric methods,” Chemometr. Intell. Lab. Syst., 147, pp. 105-110, Oct. 2015.

    Article  Google Scholar 

  22. Google Play, AssayColor, [Online]. Available: https://play.google.com/store/apps/details?id=com.alidans.assaycolor&hl=en

  23. Google Play, Technical Analysis Tool, [Online]. Available: https://play.google.com/store/apps/details?id=ua.antonSydorenko.easyTechAnalysis&hl=en

  24. NJew

    Google Scholar 

  25. T. Guo, R. Patnaik, K. Kuhlmann, A. J. Rai, and S. K. Sia, “Smartphone dongle for simultaneous measurement of hemoglobin concentration and detection of HIV antibodies,” Lab Chip, 15(17), pp. 3514-20,Sep. 2015.

    Article  Google Scholar 

  26. S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip, 11(20), pp. 3411-3418, Oct. 2011.

    Article  Google Scholar 

  27. V. Oncescu, D. O’Dell, and D. Erickson, “Smartphone based health accessory for colorimetric detection of biomarkers in sweet and saliva,” Lab Chip, 13(16), pp. 3232-8, Aug. 2013.

    Article  Google Scholar 

  28. L. Shen, J. A. Hagen, and I. Papautsky,“Point-of-care colorimetric detection with a smartphone,” Lab Chip, 12(21), pp. 4240-4243,Oct. 2012.

    Article  Google Scholar 

  29. M. Y. Jia, Q. S. Wu, H. Li, Y. Zhang, Y. F. Guan, and L. Feng, “The calibration of cellphone camera-based colorimetric sensor array and its application in the determination of glucose in urine,” Biosens. Bioelectron., 74, pp. 1029-1037, Dec. 2015.

    Article  Google Scholar 

  30. J. I. Hong and B. Y. Chang, “Development of smartphone-based colorimetry for multi-analyte sensing arrays” Lab Chip, 14(10), pp. 1725-32, May 2014.

    Article  Google Scholar 

  31. V. Oncescu, M. Mancuso, and D. Erickson, “Cholesterol testing on a smartphone” Lab Chip, 14(4), pp. 759–763, Feb. 2014.

    Article  Google Scholar 

  32. M. Mancuso, E. Cesarman, and D. Erickson, “Detection of Kaposi’s sarcoma associated herpesvirus nucleic acids using a smartphone accessory,” Lab Chip, 14(19), pp. 3809-16,Oct. 2014.

    Article  Google Scholar 

  33. M. Pohanka “Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by anbutyrylcholinesterase activity assay,” Sensors, 15(6), pp. 13752-62, Jun. 2015.

    Article  Google Scholar 

  34. S. Lee, V. Oncescu, M. Mancuso, S. Mehta, and D. Erickson “A smartphone platform for quantification of vitamin D levels,” Lab Chip, 14(8), pp. 1437-42, Apr. 2014.

    Article  Google Scholar 

  35. N. S. K. Gunda, S Naicker, S Shinde, S Kimbahune, S Shrivastavac, and S Mitra, “Mobile water kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli,” Anal. Methods, 6(16), pp. 6236–6246, Aug. 2014.

    Article  Google Scholar 

  36. T. S. Park and J. Y. Yoon, “Smartphone detection of Escherichia coli from field water samples on paper microfluidics,” IEEE Sensors J.15(3), pp. 1902-1907, Mar. 2015.

    Article  Google Scholar 

  37. B. Y. Chang “Smartphone-based chemistry instrumentation: digitization of colorimetric measurements” Bull. Korean Chem. Soc., 33(2), pp. 549-552, 2012.

    Article  Google Scholar 

  38. L. J. Loh, G. C. Bandara, G. L. Weber, and V. T. Remcho “Detection of water contamination from hydraulic fracturing wastewater: a μPAD for bromide analysis in natural waters,” Analyst, 140(16), pp. 5501-7, Aug. 2015.

    Article  Google Scholar 

  39. S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne “Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water” Sens. Actuat. B Chemical, 182, pp. 592-597, Jun. 2013.

    Article  Google Scholar 

  40. Q. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, R. Caire, D. Tseng, and A. Ozcan, “Detection and spatial mapping of mercury contamination in water sample using a smartphone,” ACS Nano, 8(2), pp. 1121-9, Feb. 2014.

    Article  Google Scholar 

  41. T. S. Park, C. Baynes, S.-I. Cho and J.-Y. Yoon, “Paper microfluidics for red wine tasting,” RSC Adv., 4(46), pp. 24356-62, May 2014.

    Article  Google Scholar 

  42. M. Zangheri, L. Cevenini, L. Anfossi, C. Baggiani, P. Simoni, F. D. Nardo, and A. Roda, “A simple and compact smartphone accessory for quantitative chemiluminescence base lateral flow immunoassay for salivary cortisol detection,” Biosens. Bioelectron., 64, pp. 63-68, Feb. 2015.

    Article  Google Scholar 

  43. E. Lebiga, R. E. Fernandez, and A. Beskok, “Confined chemiluminescence detection of nanomolar levels of H2O2 in a paper-plastic disposable microfluidic device using a smartphone,” Analyst, 140(15), pp. 5006-11, Aug. 2015.

    Article  Google Scholar 

  44. Q. Mei, H. Jing, Y. Li, W. Yisibashaer, J. Chen, B. N. Li, and Y. Zhang, “Smartphone based visual and quantitative assays on upconversional paper sensor,” Biosens. Bioelectron., 75, pp. 427-432, Jan. 2016.

    Article  Google Scholar 

  45. A. Roda, E. Michelini,L. Cevenini,D. Calabria,M. M. Calabretta, and P. Simoni, “Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis,” Anal. Chem., 86(15), pp. 7299-304, Aug. 2014.

    Article  Google Scholar 

  46. O. Mudanyali, S. Dimitrov, U. Sikora, S. Padmanabhan, I. Navruz, and A. Ozcan, “Integrated rapid-diagnostic-test reader platform on a cellphone,” Lab Chip, 12(15), pp. 2678-86, Aug. 2012.

    Article  Google Scholar 

  47. S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne “Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water” Sens. Actuat. B Chemical, 182, pp. 592-597, Jun. 2013.

    Article  Google Scholar 

  48. A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, and A. Ozcan, “A personalize food allergen testing platform on a cellphone,” Lab Chip, 13(4), pp. 636-40, Feb. 2013.

    Article  Google Scholar 

  49. H. Zhu, U. Sikora, and A. Ozcan, “Quantum dot enabled detection of Escherichia coli using a cell phone,” Analyst, 137(11), pp. 2541-44, Jun. 2012.

    Article  Google Scholar 

  50. C. A. D. Villiers, M. C. Lapsley, and E. A. H. Hall, “A step towards mobile arsenic measurement for surface waters,” Analyst, 140(8), pp. 2644-55,Apr. 2015.

    Article  Google Scholar 

  51. Q. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, R. Caire, D. Tseng, and A. Ozcan, “Detection and spatial mapping of mercury contamination in water sample using a smartphone,” ACS Nano, 8(2),pp. 1121-9, Feb. 2014.

    Article  Google Scholar 

  52. S. K. Vashist, E. M. Schneider, R. Zengerle, F. Stetten, and J. H. T. Luong, “Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader,” Biosens. Bioelectron., 66, pp. 169–176, Apr. 2015.

    Article  Google Scholar 

  53. L. Yu, Z. Z. Shi, C. Fang, Y. Y. Zhang, Y. S. Liu, and C. M. Li, “Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk,” Biosens. Bioelectron., 69, pp. 307–315,Jul. 2015

    Article  Google Scholar 

  54. New Ref

    Google Scholar 

  55. H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbauma, and A. Ozcan, “Optical imaging techniques for point-of-care diagnostics,” Lab Chip, 13(1), pp. 51-67, Jan. 2013.

    Article  Google Scholar 

  56. A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS ONE, 9(5), p. e96906, May 2014.

    Article  Google Scholar 

  57. N. A. Switz, M. V. D’Ambrosio, and D. A. Fletcher, “Low-cost mobile phone microscopy with a reversed mobile phone camera lens,” PLoS ONE, 9(5), p. e95330, May 2014.

    Article  Google Scholar 

  58. H. Zhu, S. Mavandadi, A. F. Coskun, A. Yaglidere, and A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Analyt. Chem., 83(17), pp. 6641-6647, Sep. 2011.

    Article  Google Scholar 

  59. D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yagliderea, and A. Ozcan, “Lens free microscopy on a cellphone,” Lab Chip, 10(14), pp. 1787–1792,Jul. 2010.

    Article  Google Scholar 

  60. C. J. Tuijn, B. J. Hoefman, H. Beijma, L. Oskam, and N. Chevrollier, “Data and image transfer using mobile phones to strengthen microscopy-based diagnostic services in low and middle income country laboratories,” PLoS ONE, 6(12), p. e28348, Dec. 2011.

    Article  Google Scholar 

  61. S. A. Lee and C. Yang, “A smartphone-based chip-scale microscope using ambient illumination” Lab Chip, 14(16), pp. 3056–3063,Aug. 2014.

    Article  Google Scholar 

  62. D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE, 4(7), p. e6320, Jul. 2009.

    Article  Google Scholar 

  63. Q. Wei, W. Luo, S. Chiang, T. Kappel, C. Mejia, D. Tseng, R. Y. L. Chan, E. Yan, H. Qi, F. Shabbir, H. Ozcan, S. Feng, and A. Ozcan, “Imaging and sizing of single DNA molecules on a mobile phone,” ACS Nano, 8(12), pp. 12725-33, Dec. 2014.

    Article  Google Scholar 

  64. T. S. Park, W. Li, K. E. McCracken, and J.-Y. Yoon, “Smartphone quantifies Salmonella from paper microfluidics,” Lab Chip, 13(24), pp. 4832-4840,Dec. 2013.

    Article  Google Scholar 

  65. H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip, 13(7), pp. 1282-88, Apr. 2013.

    Article  Google Scholar 

  66. I. I. Bogoch, J. R. Andrews, B. Speich, J. Utzinger, S. M. Ame, S. M. Ali, and J. Keiser, “Mobile phone microscopy for the diagnosis of soil-transmitted helminth infections: a proof-of-concept study,” Am. J. Trop. Med. Hyg., 88(4), pp. 626-629, Apr. 2013.

    Article  Google Scholar 

  67. F. Li, Y. Bao, D. Wang, W. Wang, and L. Niu, “Smartphones for sensing,” Sci. Bull., 61(3), 190–201, Feb. 2016.

    Article  Google Scholar 

  68. J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a Rhodamine-123 doped self-assembled ‘giant’ mesostructured silica sphere using asmartphone as optical hardware,” Sensors, 11(7), pp. 7055–7062, Jul. 2011.

    Article  Google Scholar 

  69. J. Canning, M. Naqshbandi, and M. J. Crossley, “Measurement of Rhodamine B absorption in self-assembled silica microwires using a Tablet as the optical source,” Proc. SPIE, 8351, pp. 83512E-1–83512E-5, Jan. 2012.

    Google Scholar 

  70. P. Wargocki, W. Deng, A. G. Anwer, and E. M. Goldys, “Medically relevant assays with a simple smartphone and tablet based fluorescence detection system,” Sensors, 15(5), pp. 11653-11664, May 2015.

    Article  Google Scholar 

  71. P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones” Angew. Chem. Int. Ed. 51, pp. 11585–11588, Oct. 2012.

    Article  Google Scholar 

  72. H. Zhu, O. Yaglidere, T. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell phone,” Lab Chip, 11(2), pp. 315-322, Jan. 2011.

    Article  Google Scholar 

  73. S. K. J. Ludwig, H. Zhu, S. Phillips, A. Shiledar, S. Feng, D. Tseng, L. A. Ginkel, M. W. F. Nielen, and A. Ozcan, “Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay,” Anal. Bioanal. Chem., 406(27), pp. 6857–6866, Nov. 2014.

    Article  Google Scholar 

  74. H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip, 15(5), pp. 1284-1293, Mar. 2015.

    Article  Google Scholar 

  75. Z. J. Smith, K. Chu, A. R. Espenson, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell phone-based platform for biomedical device development and education applications,” PLoS ONE, 6(3), p. e17150, Mar. 2011.

    Article  Google Scholar 

  76. R.D. Stedtfeld, D. M. Tourlousse, G. Seyrig, T. M. Stedtfeld, M. Kronlein, S. Price, F. Ahmad, E. Gulari, J. M. Tiedje, and S. A. Hashsham, “Gene-Z: a device for point of care genetic testing using a smartphone,” Lab Chip, 12(8) pp. 1454–1462, Apr. 2012.

    Article  Google Scholar 

  77. A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards, and N. M. Reis, “Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device,” Biosens. Bioelectron., 70, pp. 5-14, Aug. 2015.

    Article  Google Scholar 

  78. B. Awqatty, S. Samaddar K. J. Cash, H. A. Clark, and J. M. Dubach, “Fluorescent sensors for the basic metabolic panel enable measurement with a smart phone device over the physiological range,” Analyst, 139(20), pp. 5230-8, Oct. 2014.

    Article  Google Scholar 

  79. E. Petryayeva and W. R. Algar, “Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper in- PDMS chips,” Analyst, 140(20), pp. 4037-4045, Jun. 2015.

    Article  Google Scholar 

  80. C. F. Fronczek, T. S. Park, D. K. Harshman, A. M. Nicolini, and J.-Y. Yoon, “Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples,” RSC Adv., 4(22), pp. 11103-10, Feb. 2014.

    Article  Google Scholar 

  81. S. Wang and X. Zhou, “Spectroscopic sensor on mobile phone,” US Patent 20060279732 A1, Dec 14, 2006.

    Google Scholar 

  82. Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. W. Hogiu, “Cell-phone-based platform for biomedical device development and education applications” PLoS ONE, 6(3), p. e17150, Mar. 2011.

    Article  Google Scholar 

  83. H. Yu, Y. Tan, and B. T. Cunningham, “Smartphone fluorescence spectroscopy,” Anal. Chem., 86(17), pp. 8805-13, Sep. 2014.

    Article  Google Scholar 

  84. K. D. Long, H. Yu, and B. T. Cunningham, “Smartphone instruments for portable enzyme-linked immunosorbent assay,” Biomed. Opt. Express, 5(11), pp. 3792-806, Nov. 2014.

    Article  Google Scholar 

  85. M. A. Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined ‘dual’ absorption and fluorescence smartphone spectrometers,” Opt. Lett. 40(8), pp. 1737–1740, Apr. 2015.

    Article  Google Scholar 

  86. S. Dutta, A. Choudhury, and P. Nath, “Evanescent wave coupled spectroscopic sensing using smartphone,” IEEE Phot. Tech. Lett., 26(6), 568-570, Mar. 2014.

    Article  Google Scholar 

  87. S. Dutta, D. Sarma, A. Patel, and P. Nath, “Dye-assisted pH sensing using a smartphone” IEEE Phot. Tech. Lett., 27(22), pp. 2363–2366, Nov. 2015.

    Article  Google Scholar 

  88. S. Dutta, G. P. Saikia, D. J. Sarma, K. Gupta, P. Das, and P. Nath, “Protein, enzyme and carbohydrate quantification using smartphone through colorimetric digitization technique,” J. Biophotonics, 2016, pp. 1–11, May 2016.

    Google Scholar 

  89. E. K. Grasse, M. H. Torcasio, and A. W. Smith, “Teaching UV–Vis spectroscopy with a 3D-printable smartphone spectrophotometer,” J. Chem. Educ., 93(1), pp. 146–151, Nov. 2016.

    Article  Google Scholar 

  90. Y. Wang, X. Liu, P. Chen, N. T. Tran, J. Zhang, W. S. Chia, S. Boujday, and B. Liedberg “Smartphone spectrometer for colorimetric bio-sensing,” Analyst, 141(11), pp. 3233-38, Jun. 2016.

    Article  Google Scholar 

  91. E. Petryayevaand W. R. Algar, “A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence,” Anal. Bioanal. Chem., 408(11), pp. 2913–2925 Apr. 2016.

    Article  Google Scholar 

  92. C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-Fresnel smartphone spectrometer,” Lab Chip, 16(2), pp. 246-250, Jan. 2016.

    Article  Google Scholar 

  93. M. A. Hossain, J. Canning, Z. Yu, K. Cook, S. Ast and A. Jamalipour, “Fluorescence-based quality assurance of olive oils using a smartphone spectrofluorimeter,” To be submitted soon.

    Google Scholar 

  94. L.-J. Wang, Y.-C. Chang, R. Sun, and L. Li, “A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics,” Biosens. Bioelectron., 87, pp. 686–692, Jan. 2017.

    Article  Google Scholar 

  95. G. K. Özdemir, A. Bayram, V. Kılıçc, N. Horzumd, and M. E. Solmaz, “Smartphone-based detection of dyes in water for environmental sustainability,” Anal. Methods, 2016 (in press). Available: http://pubs.rsc.org/en/content/articlelanding/2016/ay/c6ay03073d#!divAbstract.

  96. L.-J. Wang, Y.-C. Chang, X. Ge, A. T. Osmanson, D. Du, Y. Lin, and L. Li, “Smartphone optosensing platform using a DVD grating to detect neurotoxins,” ACS Sens., 1(4), pp. 366–373, Jan. 2016.

    Article  Google Scholar 

  97. M. N. KamelBoulos, A. C. Brewer, C. Karimkhani, D. B. Buller, and R. P. Dellavalle, “Mobile medical and health apps: state of the art, concerns, regulatory control and certification,” Online J. Public Health Inform., 5(3), p. 229, Feb. 2014.

    Google Scholar 

  98. ALPhANOV, Centre TechnologiqueOptiqueet Lasers, “GOSPECTRO – THE POWER OF SPECTROSCOPY AT YOUR FINGERTIPS,” [Online available] http://www.alphanov.com/223-news-gospectro-the-power-of-spectroscopy-at-your-fingertips.html (accessed on 20 June 2017).

  99. D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Natha, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip, 13(11),pp. 2124-2132, Jun. 2013.

    Article  Google Scholar 

  100. Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wangn, and W. Peng, “Surface plasmon resonance biosensor based on smart phone platforms,” Sci. Rep., 5, p. 12864, Aug. 2015.

    Article  Google Scholar 

  101. S. Dutta, K. Saikia, and P. Nath, “Smartphone based LSPR sensing platform for bio-conjugation detection and quantification,” RSC Adv., 6(26), pp. 21871-80, Feb. 2016.

    Article  Google Scholar 

  102. K. Bremer and B. Roth, “Fibre optic surface plasmon resonance sensor system designed for smartphones,” Opt. Express, 23(13), pp. 17179-17184, Jun. 2015.

    Google Scholar 

  103. J. L. Delaney, E. H. Doeven, A. J. Harsant, and C. F. Hogan “Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors,” Anal. Chim. Acta, 790, pp. 56–60, Aug. 2013.

    Article  Google Scholar 

  104. J. L. Delaney, C. F. Hogan, J. Tian, and W. Shen “Electrogenerated chemiluminescence detection in paper-based microfluidic sensors,” Anal. Chem., 83(4), pp. 1300–1306, Feb. 2011.

    Article  Google Scholar 

  105. E. H. Doeven, G. J. Barbante, A. J. Harsant, P. S. Donnelly, T. U. Connell, C. F. Hogan, and P. S. Francis, “Mobile phone-based electrochemiluminescence sensing exploiting the ‘USB On-The-Go’ protocol,” Sen. Actuat. B Chem., 216, pp. 608–613, Sep. 2015.

    Article  Google Scholar 

  106. X. Wang, M. R. Gartia, J. Jiang, T.-W. Chang, J. Qian, Y. Liu, X. Liu, and G. L. Liu, “Audio jack based miniaturized mobile phone electrochemical sensing platform,”Sen. Actuat. B Chem., 209, pp. 677–685, Mar. 2015.

    Article  Google Scholar 

  107. M. Velikov, R. L. Smeets, J. T. V. Scheltinga, P. J.F. Lucas, and M. Spaanderman, “Smartphone-based analysis of biochemical tests for health monitoring support at home,” Healthc. Technol. Lett., 1(3), pp. 92–97, Sep. 2014.

    Article  Google Scholar 

  108. H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip, 13(7), pp. 1282-88, Apr. 2013.

    Article  Google Scholar 

  109. I. I. Bogoch, J. R. Andrews, B. Speich, J. Utzinger, S. M. Ame, S. M. Ali, and J. Keiser, “Mobile phone microscopy for the diagnosis of soil-transmitted helminth infections: a proof-of-concept study,” Am. J. Trop. Med. Hyg., 88(4), pp. 626-629, Apr. 2013.

    Article  Google Scholar 

  110. F. Li, Y. Bao, D. Wang, W. Wang, and L. Niu, “Smartphones for sensing,” Sci. Bull., 61(3), 190–201. Feb. 2016.

    Article  Google Scholar 

  111. M. A. Hossain, J. Canning, S. Ast, P. Rutledge, T. L. Yen, R. Webster, and A. Jamalipour, “Centralised and portable “network forensics” using smartphone-based diagnostics: Case Study – the mapping of tap water pH across Sydney, Australia” Proc. IEEE Photonic Conference, 2014, pp. 564–565.

    Google Scholar 

  112. A. Hossain, J. Canning, S. Ast, P. Rutledge, and A. Jamalipour, “Early warning smartphone diagnostics for water security and analysis using real-time pH mapping,” Phot. Sensors, 5(4), pp. 289-297, Dec. 2015.

    Article  Google Scholar 

  113. X. Hong, V. K. Nagarajan, D. H. Mugler, and B. Yu, “Smartphone microendoscopy for high resolution fluorescence imaging,” J. Innovative Optical Health Sciences, 9(5), pp. 1650046-52, Mar. 2016.

    Article  Google Scholar 

  114. J. Canning “Smartphone spectrometers and other instrumentation,” Sensing & Measurement, SPIE Newsroom, 8 Jan. 2016.

    Google Scholar 

  115. M. A. Hossain, J. Canning, S. Ast, P. Rutledge, T. L. Yen, and A. Jamalipour, “Lab-in-a-phone: Smartphone-based portable fluorometer for pH measurements of environmental water,” IEEE Sensors J., 15(9), pp. 5095-5102, Sep. 2015.

    Article  Google Scholar 

  116. M. A. Hossain, J. Canning, T. L. Yen, S. Ast, P. Rutledge, and A. Jamalipour “A smartphone fluorometer - the lab-in-a-phone”Proc. OSA, Advanced Photonics - Optical Sensors, 2014, p. SeTh2C.1

    Google Scholar 

  117. M. A. Hossain, J. Canning, S. Ast, P. Rutledge, T. L. Yen, R. Webster, and A. Jamalipour, “Centralised and portable “network forensics” using smartphone-based diagnostics: Case Study – the mapping of tap water pH across Sydney, Australia” Proc. IEEE Photonic Conference, 2014, pp. 564–565.

    Google Scholar 

  118. M. A. Hossain, J. Canning, S. Ast, P. Rutledge, and A. Jamalipour, “Early warning smartphone diagnostics for water security and analysis using real-time pH mapping,” Phot. Sensors, 5(4), pp. 289-297, Dec. 2015.

    Article  Google Scholar 

  119. J. Canning, M. A. Hossain, and A. Jamalipour, “Smartphone spectrometers,” Proc. Australian and New Zealand Conference on Optics and Photonics (ANZCOP), Nov.- Dec. 2015.

    Google Scholar 

  120. M. A. Hossain, S. Ast, J. Canning, K. Cook, P. J. Rutledge, and A. Jamalipour, “Fluorescent measurements of Zn2+ on a smartphone,” Proc. SPIE 9655, 5th Asia Pacific Optical Sensors Conference, Jul. 2015.

    Google Scholar 

  121. M. A. Hossain, J. Canning, K. Cook, S. Ast, P. J. Rutledge, and A. Jamalipour, “Absorption and fluorescence spectroscopy on a smartphone,” Proc. SPIE 9655, 5th Asia Pacific Optical Sensors Conference, Jul. 2015.

    Google Scholar 

  122. M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Smartphone spectrometer with fiber endoscope probe” Proc. Australian and New Zealand Conference on Optics and Photonics (ANZCOP), Nov.- Dec. 2015.

    Google Scholar 

  123. M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Portable smartphone optical fibre spectrometer” Proc. SPIE 9634, 24th Optical Fiber Sensors Conferences, Sep. 2015.

    Google Scholar 

  124. M. A. Hossain, J. Canning, Z. Yu, S. Ast, P. J. Rutledge, J. K.-H. Wong, A. Jamalipour, and M. J. Crossley “Time-resolved and temperature tuneable measurements of fluorescent intensity using a smartphone fluorimeter” Analyst, 142, 1953-1961, May 2017.

    Article  Google Scholar 

  125. M. A. Hossain, Z. Yu, J. Canning, S. Ast, P. J. Rutledge, J. K.-H. Wong, M. J. Crossley, and A. Jamalipour, “Temperature controlled portable smartphone fluorimeter,”Proc. OSA, 6th Asia Pacific Optical Sensors Conference, Oct. 2016, p. W2A.2.

    Google Scholar 

  126. J. Canning, S. Ast, M. A. Hossain, H. Chan, P. J. Rutledge, and A. Jamalipour, “Bend and twist intramolecular charge transfer and emission for selective metal ion sensing,” Opt. Mat. Express, 5(11), pp. 2675-2681, Oct. 2015.

    Article  Google Scholar 

  127. J. Canning, M. A. Hossain, and S. Ast, “Smart Sensing: Combining Photonics, Smart Devices and Chemosensor Dyes for Characterising and Separating Metal Ions,” Proc. OSA, 6th Asia Pacific Optical Sensors Conference, Oct. 2016, p. Th2A.1.

    Google Scholar 

  128. J. Canning, S. Ast, M. A. Hossain, H. Chan, P. J. Rutledge, and A. Jamalipour, "Metal ion detection by twist-induced charge transfer within a fluoro-ionophore: molecular photovoltaics and mechanics for IoT lab-in-a-phone" Proc. Int. Conf. on Small Science, Nov. 2015.

    Google Scholar 

  129. J. Canning, “Optically induced charge transfer as the foundation for nanobot technology,” Proc. OSA, Photonics and Fiber Technology, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Sep. 2016, p. JT4A.2.

    Google Scholar 

  130. The Royal Swedish Academy of Sciences, Stockholm, Sweden, Molecular Machines, Scientific Background on the Nobel Prize in Chemistry 2016, [Online]. Available: https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/advanced-chemistryprize2016.pdf

  131. M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Smartphone laser beam spatial profiler,” Optics Letters, 40(22), pp. 5156-5159, Nov. 2015.

    Article  Google Scholar 

  132. M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Smartphone laser beam profiler,” Proc. Australian and New Zealand Conference on Optics and Photonics (ANZCOP), Nov.- Dec. 2015.

    Google Scholar 

  133. M. A. Hossain, J. Canning, K. Cook, S. Ast, and A. Jamalipour, “Photo- and thermal degradation of olive oil measured using an optical fibre smartphone spectrofluorimeter,” Accepted paper in the 25th Optical Fiber Sensor (OFS25) Conference.

    Google Scholar 

  134. David Pile “Imaging and sensing: Portable profiler,” Nat. Photon. News, 10, 8, Jan. 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamalipour, A., Hossain, M.A. (2019). Introduction. In: Smartphone Instrumentations for Public Health Safety. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-02095-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02095-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02094-1

  • Online ISBN: 978-3-030-02095-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics