Skip to main content

Origins of Discontinuity

  • Chapter
  • First Online:
Hidden Dynamics
  • 812 Accesses

Abstract

Discontinuities occur when light refracts, when neurons or electronic switches activate, and when collisions or decisions or mitosis or myriad other processes enact a change of regime. We observe them in empirical laws, in the structure of solid bodies, and also in the series expansions of certain mathematical functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover, 1964.

    Google Scholar 

  2. M. A. Aizerman and F. R. Gantmakher. On the stability of equilibrium positions in discontinuous systems. Prikl. Mat. i Mekh., 24:283–93, 1960.

    MATH  Google Scholar 

  3. M. A. Aizerman and E. S. Pyatnitskii. Fundamentals of the theory of discontinuous systems I,II. Automation and Remote Control, 35:1066–79, 1242–92, 1974.

    Google Scholar 

  4. J. C. Alexander and T. I. Seidman. Sliding modes in intersecting switching surfaces, i: Blending. Houston J. Math, 24(3):545–569, 1998.

    MathSciNet  MATH  Google Scholar 

  5. J. C. Alexander and T. I. Seidman. Sliding modes in intersecting switching surfaces, ii: Hysteresis. Houston J. Math, 25(1):185–211, 1999.

    MathSciNet  MATH  Google Scholar 

  6. G. Amontons. De la resistance causée dans les machines, tant par les frottemens des parties qui les composent, que par roideur des cordes qu’on y employe, et la maniere de calculer l’un et l’autre. Histoire de l’Académie royale des sciences, 1699.

    Google Scholar 

  7. A. A. Andronov and S. E. Khaikin. Theory of Oscillations, Part I. Moscow: ONTI NKTN (in Russian), 1937.

    Google Scholar 

  8. A. A. Andronov, A. A. Vitt, and S. E. Khaikin. Theory of oscillations. Moscow: Fizmatgiz (in Russian), 1959.

    Google Scholar 

  9. Aristotle. The Physics. 1837 Bekker edition of Aristotle’s Works, 3rd century BC.

    Google Scholar 

  10. Robin Waterfield (Translator)] Aristotle [David Bostock (Editor). Physics. Oxford World’s Classics, 2008.

    Google Scholar 

  11. J. B. Barbour. The Discovery of Dynamics. Oxford University Press, 2001.

    Google Scholar 

  12. C. M. Bender and S. A. Orszag. Advanced mathematical methods for scientists and engineers I. Asymptotic methods and perturbation theory. Springer-Verlag, New York, 1999.

    Google Scholar 

  13. F P Bowden and D Tabor. The friction and Lubrication of Solids. Oxford University Press, 1950.

    Google Scholar 

  14. J. A. bu Qahouq, H. Mao, H. J. Al-Atrash, and I. Batarseh. Maximum efficiency point tracking (mept) method and digital dead time control implementation. IEEE Transactions on Power Electronics, 21(5):1273–1281, 2006.

    Google Scholar 

  15. P. Collett and J-P. Eckmann. Iterated Maps on the Interval as Dynamical Systems. Boston: Birkhauser, 1980.

    Google Scholar 

  16. Charles Darwin. Origin of Species. John Murray, London, 1859.

    Google Scholar 

  17. R. Descartes. Traité du monde et de la lumière. modern reprint: Abaris Books, 1979, 1677.

    Google Scholar 

  18. D. Dowson. History of Tribology. Professional Engineer Pulbishing, London, 1998.

    Google Scholar 

  19. J. Eggers. Singularities in droplet pinching with vanishing viscocity. SIAM J. Appl. Math., 60(6):1997–2008, 2000.

    MathSciNet  MATH  Google Scholar 

  20. H. Feinberg. Physicists: Epoch And Personalities, volume 4 of History of Modern Physical Sciences. World Scientific, Singapore, 2011.

    Google Scholar 

  21. A. F. Filippov. Differential equations with discontinuous right-hand side. American Mathematical Society Translations, Series 2, 42:19–231, 1964.

    Google Scholar 

  22. A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publ. Dortrecht, 1988 (Russian 1985).

    Google Scholar 

  23. I. Flügge-Lotz. Discontinuous Automatic Control. Princeton University Press, 1953.

    Google Scholar 

  24. A. Kh. Gelig, G. A. Leonov, and V. A. Iakubovich. Stability of nonlinear systems with nonunique equilibrium position. Moscow, Izdatel’stvo Nauka (in Russian), page 400, 1978.

    Google Scholar 

  25. P. Glendinning. Robust new routes to chaos in differential equations. Physics Letters A, 168:40–46, 1992.

    MathSciNet  Google Scholar 

  26. A. Guran, F. Pfeiffer, and K. Popp, editors. Dynamics with Friction: Modeling, Analysis and Experiment I & II, volume 7 of Series B. World Scientific, 1996.

    Google Scholar 

  27. O. Hájek. Discontinuous differential equations, I. J. Differential Equations, 32(2):149–170, 1979.

    MathSciNet  MATH  Google Scholar 

  28. O. Hájek. Discontinuous differential equations, II. J. Differential Equations, 32(2):171–185, 1979.

    MathSciNet  MATH  Google Scholar 

  29. W. R. Hamilton. Third supplement to an essay on the theory of systems of rays. Transactions of the Royal Irish Academy, presented in 1832, 17:1–144, 1837.

    Google Scholar 

  30. A. V. Hill. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Proc. Physiol. Soc., 40:iv–vii, 1910.

    Google Scholar 

  31. N. Hinrichs, M. Oestreich, and K. Popp. On the modelling of friction oscillators. J. Sound Vib., 216(3):435–459, 1998.

    Google Scholar 

  32. I. M. Hutchings. Leonardo da vinci’s studies of friction. Wear, 360–361:51–66, 2016.

    Google Scholar 

  33. M. A. Kiseleva and N. V. Kuznetsov. Coincidence of the Gelig-Leonov-Yakubovich, Filippov, and Aizerman-Pyatnitskiy definitions. Vestnik St. Petersburg University: Mathematics, 48(2):66–71, 2015.

    MathSciNet  MATH  Google Scholar 

  34. Klymkowsky and Cooper. Biofundamentals, 2016.

    Google Scholar 

  35. J. Krim. Friction at macroscopic and microscopic length scales. Am. J. Phys., 70:890–897, 2002.

    Google Scholar 

  36. V. Kulebakin. On theory of vibration controller for electric machines. Theor. Exp. Electon (in Russian), 4, 1932.

    Google Scholar 

  37. J. Larmor. Sir George Gabriel Stokes: Memoir and Scientific Correspondence, volume 1. Cambridge University Press, 1907.

    Google Scholar 

  38. A. Le Bot and E. Bou Chakra. Measurement of friction noise versus contact area of rough surfaces weakly loaded. Tribology Letters, 37:273–281, 2010.

    Google Scholar 

  39. G. W. (Translated Leibniz, edited by P., and J.) Bennett. New Essays on Human Understanding c.1704, volume IV:16. New York: Cambridge University Press, 1981.

    Google Scholar 

  40. E. Lindelöf. Sur l’application de la méthode des approximations successives aux équations différentielles ordinaires du premier ordre. C. R. Hebd. Seances Acad. Sci, 114:454–457, 1894.

    MATH  Google Scholar 

  41. C. Linnaeus. Philosophia Botanica, chapter III, 77. Typis Joannis Thomae de Trattner, 1st edition, 1751.

    Google Scholar 

  42. H Lloyd. Further experiments on the phaenomena presented by light in its passage along the axes of biaxial crystals. Lond Ed Phil Mag, 2:207–210, 1833.

    Google Scholar 

  43. H Lloyd. On the phaenomena presented by light in its passage along the axes of biaxial crystals. Lond Ed Phil Mag, 2:112–120, 1833.

    Google Scholar 

  44. R. Lozi. Un attracteur étrange (?) du type attracteur de Hénon. Journal de Physique, 39:C5–9, 1978.

    Google Scholar 

  45. A.J.S. Machado, S.T. Renosto, C.A.M. dos Santos, L.M.S. Alves, and Z. Fisk. Superconductors - Materials, Properties and Applications, chapter Defect Structure Versus Superconductivity in MeB2 Compounds (Me = Refractory Metals) and One-Dimensional Superconductors. InTech, 2012.

    Google Scholar 

  46. NASA. Voyager recent history, http://voyager.gsfc.nasa.gov/heliopause/recenthist.html, last viewed Aug 2016, 2012.

  47. J. Nash. The imbedding problem for Riemannian manifolds. Annals of Mathematics, 63(1):20–63, 1956.

    MathSciNet  MATH  Google Scholar 

  48. I. Newton. PhilosophiæNaturalis Principia Mathematica. 1729.

    Google Scholar 

  49. G. Nikolsky. On automatic stability of a ship on a given course. Proc Central Commun Lab (in Russian), 1:34–75, 1934.

    Google Scholar 

  50. D. Paillard and F. Parrenin. The antarctic ice sheet and the triggering of deglaciations. Earth and Planetary Science Letters, 227:263–271, 2004.

    Google Scholar 

  51. B. N. J. Persson. Sliding Friction: Physical Principles and Applications. Springer, 1998.

    Google Scholar 

  52. T. Putelat, J. H. P. Dawes, and J. R. Willis. On the microphysical foundations of rate-and-state friction. Journal of the Mechanics and Physics of Solids, 59(5):1062–1075, 2011.

    MathSciNet  MATH  Google Scholar 

  53. M. Radiguet, D. S. Kammer, P. Gillet, and J.-F. Molinari. Survival of heterogeneous stress distributions created by precursory slip at frictional interfaces. PRL, 111(164302):1–4, 2013.

    Google Scholar 

  54. L. Sherwood. Human Physiology, From Cells to Systems. Cengage Learning, 2012.

    Google Scholar 

  55. J. Shi, J. Guldner, and V. I. Utkin. Sliding mode control in electro-mechanical systems. CRC Press, 1999.

    Google Scholar 

  56. D. J. W. Simpson and R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems. Discrete Contin. Dyn. Syst. Ser. B, 19(9):2889–2913, 2014.

    MathSciNet  MATH  Google Scholar 

  57. M. Sorensen, S. DeWeerth, G Cymbalyuk, and R. L. Calabrese. Using a hybrid neural system to reveal regulation of neuronal network activity by an intrinsic current. Journal of Neuroscience, 24(23):5427–5438, 2004.

    Google Scholar 

  58. G G Stokes. On the discontinuity of arbitrary constants which appear in divergent developments. Trans Camb Phil Soc, 10:106–128, 1864.

    Google Scholar 

  59. C. Studer. Numerics of Unilateral Contacts and Friction, volume 47 of Lecture Notes in Applied and Computational Mechanics. Springer Verlag, 2009.

    Google Scholar 

  60. D. Tabor. Triobology - the last 25 years. a personal view. Tribology International, 28(1):7–10, 1995.

    Google Scholar 

  61. M. A. Teixeira. Structural stability of pairings of vector fields and functions. Boletim da S.B.M., 9(2):63–82, 1978.

    MathSciNet  MATH  Google Scholar 

  62. M. A. Teixeira. On topological stability of divergent diagrams of folds. Math. Z., 180:361–371, 1982.

    MathSciNet  MATH  Google Scholar 

  63. G.A. Tomlinson. A molecular theory of friction. Philos. Mag., 7(7):905–939, 1929.

    Google Scholar 

  64. Y. Tsypkin. Theory of Relay Control Systems. (in Russian), Moscow: Gostechizdat, 1955.

    Google Scholar 

  65. V. I. Utkin. Sliding modes in control and optimization. Springer-Verlag, 1992.

    Google Scholar 

  66. A. J. Vander, D. Luciano, and J. Sherman. Movement of Molecules Across Cell Membranes. Human Physiology: The Mechanism of Body Function. McGraw-Hill Higher Education, 2001.

    Google Scholar 

  67. W. R. Webber and F. B. McDonald. Recent voyager 1 data indicate that on 25 august 2012 at a distance of 121.7 au from the sun, sudden and unprecedented intensity changes were observed in anomalous and galactic cosmic rays. Geophysical Research Letters, 40(9):1665–1668, 2013.

    Google Scholar 

  68. A. J. Weymouth, D. Meuer, P. Mutombo, T. Wutscher, M. Ondracek, P. Jelinek, and F. J. Giessibl. Atomic structure affects the directional dependence of friction. PRL, 111(126103):1–4, 2013.

    Google Scholar 

  69. J. Wojewoda, S. Andrzej, M. Wiercigroch, and T. Kapitaniak. Hysteretic effects of dry friction: modelling and experimental studies. Phil. Trans. R. Soc. A, 366:747–765, 2008.

    MathSciNet  MATH  Google Scholar 

  70. J. Woodhouse, T. Putelat, and A. McKay. Are there reliable constitutive laws for dynamic friction? Phil. Trans. R. Soc. A, 373(20140401):1–21, 2015.

    Google Scholar 

  71. V. A. Yakubovich, G. A. Leonov, and A. K. Gelig. Stability of stationary sets in control systems with discontinuous nonlinearities. Singapore: World Scientific, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeffrey, M.R. (2018). Origins of Discontinuity. In: Hidden Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-02107-8_1

Download citation

Publish with us

Policies and ethics