Skip to main content

Processing Techniques

  • Chapter
  • First Online:
Semiconductors

Abstract

The semiconductor industry is nowadays under constant pressure to produce devices which are cheaper, smaller, more powerful, and efficient. Moreover, current advances in the production of thin layers have made a whole new range of devices manufacturable. Thin films on substrates are generally prepared using bulk growth methods or physical vapor deposition (PVD) and chemical vapor deposition (CVD) . Growth and processing techniques of materials including semiconductors are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhat HL (2014) Introduction to crystal growth: principles and practice. CRC Press, Taylor and Francis

    Book  Google Scholar 

  2. Dhanaraj G, Byrappa K, Prasad V, Dudley M (2010) Springer handbook of crystal growth. Springer, Springer Handbook of Crystal Growth

    Book  Google Scholar 

  3. Brice JC (1965) The growth of crystals from the melt. Vol. V selected topics in solid state phys. In: Wohlfarth EP (ed) North Holland, Amsterdam

    Google Scholar 

  4. Lu J, Miao J (2012) Growth mechanism of carbon nanotubes: a nano Czochralski model. Nanoscale Res Lett 7:356

    Article  CAS  Google Scholar 

  5. Brice JC (1986) Crystal growth processes. Blackie&Son Ltd

    Google Scholar 

  6. Gilman JJ (1963) The art and science of growing crystals. Wiley, New York

    Google Scholar 

  7. Feigelson RS (1983) In: Kaldis E (ed) Crystal growth of electronic materials. North-Holland, New York, pp 127–145

    Google Scholar 

  8. Miyagawa C, Kobayashi T, Taishi T et al (2013) Demonstration of crack-free c-axis sapphire crystal growth using the vertical Bridgman method. J Cryst Growth 372:95–99

    Article  CAS  Google Scholar 

  9. Hoshikawa K, Taishi T, Ohba E et al (2014) Vertical Bridgman growth of sapphire crystals, with thin-neck formation process. J Cryst Growth 401:146–149

    Article  CAS  Google Scholar 

  10. Wilke K (1988) Kristallzüchtung. In: J. Bohm (ed) VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  11. Brice JC (1973) The growth of crystals frorn liquids. North-Holland, Amsterdam

    Google Scholar 

  12. Arthur JR (2002) Molecular beam epitaxy. Surf Sci 500:189–217

    Article  CAS  Google Scholar 

  13. Chambers A (2005) Modern vacuum physics. Chapman & Hall (CRC), Foundations of Vacuum Science and Technology, Wiley-Interscience

    Google Scholar 

  14. Knodle WS, Chow R (1988) Molecular beam epitaxy: equipment and practice in handbook of thin film deposition processes and techniques: principles, methods, equipment and applications, 2nd edn. Noyes Publications, Norwich, New York, USA. Ch. 10 Ed Krishna Seshan

    Google Scholar 

  15. Oura K, Lifshits VG, Saranin AA et al (2003) Surface science: an introduction. Springer, Advanced Texts in Physics

    Book  Google Scholar 

  16. Pimpinelli A, Villain J (1998) Physics of crystal growth. Cambridge University Press, Collection Alea-Saclay

    Book  Google Scholar 

  17. Venables JA (2000) Introduction to surface and thin film processes. Cambridge University Press

    Google Scholar 

  18. Suntola T, Antson J, Pakkala A et al (1980) Atomic layer epitaxy for producing EL-Thin films SID Intern Symposium. Digest Techn Papers 11:108–109

    Google Scholar 

  19. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131

    Article  CAS  Google Scholar 

  20. Puurunen RL (2014) A short history of atomic layer deposition: tuomo suntola’s atomic layer epitaxy. Chem Vap Deposition 20:332–344

    Article  CAS  Google Scholar 

  21. Ritala M, Leskelä M (2001) Deposition and processing of thin films in handbook of thin film materials. In: Nalwa HS (ed) Vol 1. Academic Press, San Diego

    Google Scholar 

  22. Leskela M, Niinisto L (1990) In Atomic Layer Epitaxy. In: Suntola, T, Simpson M (ed) Blackie and Son Ltd., Glasgow

    Google Scholar 

  23. Nilsen O, Mohn CE, Kjekshus A et al (2007) Analytical model for island growth in atomic layer deposition using geometrical principles. J Appl Phys 102:024906

    Article  CAS  Google Scholar 

  24. Puurunen RL (2004) Random deposition as a growth mode in atomic layer deposition. Chem Vap Deposition 10:159–170

    Article  CAS  Google Scholar 

  25. Haukka S, Lakomaa EL, Root A (1993) An Ir and NMR study of the chemisorption of TiCl4 on silica. J Phys Chem 97:5085–5094

    Article  CAS  Google Scholar 

  26. Matero R, Rahtu A, Ritala M et al (2000) Effect of water dose on the atomic layer deposition rate of oxide thin films. ThinSolid Films 368:1–7

    Article  CAS  Google Scholar 

  27. Goodman CHL, Pessa MJ (1986) Atomic layer epitaxy. Appl Phys 60:R65–R81

    Article  CAS  Google Scholar 

  28. Nishizawa J, Abe H, Kurabayashi T (1985) Molecular Layer Epitaxy. J Electrochem Soc 132:1197–1200

    Article  CAS  Google Scholar 

  29. DenBaars SP, Beyler CA, Hariz A et al (1987) GaAs/AlGaAs quantum well lasers with active regions grown by atomic layer epitaxy. Appl Phys Lett 51:1530–1532

    Article  CAS  Google Scholar 

  30. Bedair SM, Tischler MA, Katsuyama T et al (1985) Atomic layer epitaxy of III-V binary compounds. Appl Phys Lett 47:51–53

    Article  CAS  Google Scholar 

  31. Tischler MA, Bedair SM (1990) Atomic layer epitay. Blackie and Son Ltd, Glasgow, pp 110–154

    Book  Google Scholar 

  32. Usui A, Sunakawa H (1986) GaAS Atomic layer epitaxy by hydride VPE. Jpn J Appl Phys 25:L212–L214

    Article  CAS  Google Scholar 

  33. Konagai M, Sugimoto M, Takahashi K (1978) High efficiency GaAs thin film solar cells by peeled film technology. J Cryst Growth 45:277–280

    Article  CAS  Google Scholar 

  34. Yablonovitch E, Gmitter T, Harbison JP et al (1987) Extreme selectivity in the lift-off of epitaxial GaAs films. Appl Phys Lett 51:2222–2224

    Article  CAS  Google Scholar 

  35. Bauhuis GJ, Mulder P, Haverkamp EJ et al (2010) Wafer reuse for repeated growth of III-V solar cells. Prog Photovolt Res Appl 18:155–159

    Article  CAS  Google Scholar 

  36. Liu LM, Lindauer G, Alexander WB et al (1995) Surface preparation of ZnSe by chemical methods. J Vac Sci Technol B: Microelectron Nanometer Struct 13:2238–2244

    Article  CAS  Google Scholar 

  37. Pinel S, Tasselli J, Bailbé JP et al (1998) Mechanical lapping, handling and transfer of ultra-thin wafers. J Micromech Microeng 8:338–342

    Article  Google Scholar 

  38. Rei Vilar M, El Beghdadi J, Debontridder F et al (2005) Characterization of wet-etched GaAs (100) surfaces. Surf Interface Anal 37:673–682

    Article  CAS  Google Scholar 

  39. Cheng CW, Shiu KT, Li N et al (2013) Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nature Commun 4:1577

    Article  CAS  Google Scholar 

  40. Wolf S, Tauber RN (2000) Silicon processing for the VLSI Era. In: Process technology 2nd edn. vol 1. Lattice Press, Sunset Beach, CA

    Google Scholar 

  41. Caschera D, Cortese B, Mezzi A et al (2013) Ultra hydrophobic/superhydrophilic modified cotton textiles through functionalized Diamond-Like Carbon coatings for self-cleaning applications. Langmuir 29:2775–2783

    Article  CAS  Google Scholar 

  42. Cortese B, Caschera D, Federici F et al (2014) Superhydrophobic fabrics For Oil/Water separation through a diamond like carbon (DLC) coating. J Mater. Chem. A 2:6781–6789

    Article  CAS  Google Scholar 

  43. Moretti G, Guidi F, Canton R et al (2005) Corrosion protection and mechanical performance of SiO2 films deposited via PECVD on OT59 brass. Anti-Corrosion Methods and Materials 52:266–275

    Article  CAS  Google Scholar 

  44. Chapman BN (1980) Glow discharge processes: sputtering and plasma etching. Wiley, New York

    Google Scholar 

  45. Melliar-Smith CM, Mogab CJ (1978) Thin film processes. In: Vossen, JL, Kern W (ed). Academic Press, New York, pp 497–552

    Google Scholar 

  46. Acquafredda P, Bisceglie E, Bottalico D et al (2010) Characterization of polycrystalline diamond films grown by Microwave Plasma Enhanced Chemical Vapor Deposition (MWPECVD) for UV radiation detection. Nucl Instrum Methods Phy Res A 617:405–406

    Article  CAS  Google Scholar 

  47. Kern W (1986) In microelectronic material and processes. In: Levy RA (eds). Kluwer Academic, New Jersey

    Google Scholar 

  48. Kern W, Schnable G (1979) Low-pressure chemical vapor deposition for very large-scale integration processing-A review. L IEEE Trans Electron Dev 26:647–657

    Article  Google Scholar 

  49. Stoffel A, Kovács A, Kronast W et al (1996) LPCVD against PECVD for micromechanical applications. J Micromech Microeng 6:20–33

    Article  Google Scholar 

  50. Jaeger RC (1993) Introduction to microelectronic fabrication. Addison-Wesley Publishing Company, Inc

    Google Scholar 

  51. Pierson HO (1992) Handbook of chemical vapor deposition. Noyes Publications, New Jersey

    Google Scholar 

  52. Fu XA, Dunning J, Zorman CA et al (2004) Development of a high-throughput LPCVD process for depositing low stress poly-SiC. Mater Sci Forum 457–460:305–308

    Article  Google Scholar 

  53. Campbell SA (2001) The science and engineering of microelectronic fabrication. Oxford University Press, New York

    Google Scholar 

  54. Foggiato J (2001) Chemical vapor deposition of silicon dioxide films in handbook of thin film deposition processes and techniques, 2nd edn. Noyes Publications, Norwich, New York, USA, pp 111–150

    Book  Google Scholar 

  55. Gesheva KA, Ivanova TM, Bodurov GK (2014) APCVD Transition metal oxides—functional layers in: smart windows. J Phys Conf Ser 559:012002

    Google Scholar 

  56. Kittel C (2005) Introduction to solid state physics. Wiley, Inc

    Google Scholar 

  57. Ohring M (1992) The materials science of thin films. Academic Press, London

    Google Scholar 

  58. Rees WS (1996) Introduction, in CVD of nonmetals. In: Rees WS (ed) Wiley-VCH Verlag GmbH, Weinheim, Germany

    Google Scholar 

  59. Krumdieck S (2008) Chemical vapor deposition: precursors and processes. In: Jones A, Hitchman ML (ed) RSC Publishing, Cambridge, UK

    Google Scholar 

  60. Blocher JM, Vuilland GE, Wahl G (1981) The electrochemical society: pennington. New Jersey, USA

    Google Scholar 

  61. O’Mara WC, Herring RB, Hunt LP (1990) Handbook of semiconductor silicon technology. Noyes Publications, New Jersey, USA

    Google Scholar 

  62. Niinisto L, Nieminen M, Päiväsaari J et al (2004) Advanced electronic and optoelectronic materials by atomic layer deposition: an overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. Phys stat sol (a) 201:1443–1452

    Google Scholar 

  63. Kleijn CR (2002) Chemical physics of thin film deposition processes for micro- and nano-technologies. In: Pauleau Y (eds) Springer Netherlands, vol 55, pp 119–144

    Google Scholar 

  64. Bäuerle D (2000) Laser processing and chemistry. 3rd edn. Springer, Berlin

    Book  Google Scholar 

  65. Scharf T, Krebs HU (2002) Influence of inert gas pressure on deposition rate during pulsed laser deposition. Appl Phys A 75:551–554

    Article  CAS  Google Scholar 

  66. Proyer S, Stangl E, Borz M, Hellebrand B, Bauerle D (1996) Particulates on pulsed-laser deposited YBaCuO films. Physica C 257:1–15

    Google Scholar 

  67. Bierleutgeb K, Proyer S (1997) Pulsed-laser deposition of Y–Ba–Cu–O films: the influence of fluence and oxygen pressure. Appl Surf Sci 110:331–334

    Article  Google Scholar 

  68. Rani JR, Mahadevan Pillai VP, Ajimsha RS, Jarajaj MK, Jayasree RS (2006) Effect of substrate roughness on photoluminescence spectra of silicon nanocrystals grown by off axis pulsed laser deposition. J Appl Phys 100:014302

    Article  CAS  Google Scholar 

  69. Ulman A (1991) An introduction to ultrathin organic films from langmuir-blodgett to self-assembly. Acadamic Press, California

    Google Scholar 

  70. Zharnikov M, Grunze M (2001) Spectroscopic characterization of thiol-derived self-assembled monolayers. J Phys: Condens Matter 13:11333–11365

    CAS  Google Scholar 

  71. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem. Rev. 96:1533–1554

    Article  CAS  Google Scholar 

  72. Bain CD, Evall J, Whitesides GM (1989) Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. J Am Chem Soc 111:7155–7164

    Article  CAS  Google Scholar 

  73. Ulman A (1989) Ultrathin organic films: from langmuir-blodgett to self-assembly. J Mat Ed 11:205–207

    CAS  Google Scholar 

  74. Nakamura T, Miyamae T, Nakai I et al (2005) Adsorption states of dialkyl ditelluride autooxidized monolayers on Au(111). Langmuir 21:3344–3353

    Article  CAS  Google Scholar 

  75. Weidner T, Shaporenko A, Müller J et al (2007) Self-assembled monolayers of aromatic tellurides on (111)-oriented gold and silver substrates. J Phys Chem C 111:11627–11635

    Article  CAS  Google Scholar 

  76. Watcharinyanon S, Moons E, Johansson LSO (2009) Mixed self-assembled monolayers of ferrocene-terminated and unsubstituted alkanethiols on gold: surface structure and work function. J Phys Chem C 113:1972–1979

    Article  CAS  Google Scholar 

  77. Kumar A, Biebuyck HA, Whitesides GM (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10:1498–1511

    Article  CAS  Google Scholar 

  78. Raynor JE, Capadona JR, Collard DM et al (2009) Polymer brushes and self-assembled monolayers: versatile platforms to control cell adhesion to biomaterials. Biointerphases 4:FA3–16

    Article  CAS  Google Scholar 

  79. Tan JL, Tien J, Chen CS (2002) Microcontact printing of proteins on mixed self-assembled monolayers. Langmuir 18:519–523

    Article  CAS  Google Scholar 

  80. Cavallini M, Gentili D, Greco P et al (2012) Micro- and nanopatterning by lithographically controlled wetting. Nat Protoc 7:1668–1676

    Article  CAS  Google Scholar 

  81. Celio H, Barton E, Stevenson KJ (2006) Patterned assembly of colloidal particles by confined dewetting lithography. Langmuir 22:11426–11435

    Article  CAS  Google Scholar 

  82. Toro RG, Caschera D, Palamà IE et al (2015) Unconventional patterning by solvent-assisted surface-tension-driven lithography. J Colloid Interface Sci 446:44–52

    Article  CAS  Google Scholar 

  83. Gaines GL Jr (1966) Insoluble monolayers at liquid-gas interfaces. Interscience, New York

    Google Scholar 

  84. Langmuir I (1917) The constitution and fundamental properties of solids and liquids. II Liquids J Am Chem Soc 39:1848–1906

    Article  CAS  Google Scholar 

  85. Blodgett K (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007–1022

    Article  CAS  Google Scholar 

  86. Kuhn H, Möbius D, Bücher H (1972) Spectroscopy of monolayer assemblies. In: Weissberger A, Rossiter B (eds) Physical methods of chemistry, Part III B, vol 1. Wiley, New York

    Google Scholar 

  87. Martin R, Szablewski M (1998) Tensiometers and langmuir-blodgett troughs operating manual, 4 edn. Nima Technology Ltd, The Science Park, Coventry, England

    Google Scholar 

  88. Lambert K, Capek RK, Bodnarchuk MI et al (2010) Langmuir-schaefer deposition of quantum dot multilayers. Langmuir 26:7732–7736

    Article  CAS  Google Scholar 

  89. Langmuir I, Schaefer VJ (1938) Activities of urease and pepsin monolayers. J Am Chem Soc 60:1351–1360

    Article  CAS  Google Scholar 

  90. Lee YH, Lee CK, Tan B et al (2013) Using the langmuir-schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 5:6404–6412

    Article  CAS  Google Scholar 

  91. Kern W (2007) Overview and evolution of silicon wafer cleaning in handbook of silicon wafer cleaning technology, 2nd edn. William Andrew Publishing, Norwich, NY

    Google Scholar 

  92. Hess DW, Reinhardt KA (2008) Plasma stripping, cleaning and surface conditioning in handbook of silicon wafer cleaning technology, 2nd edn. William Andrew Publishing, Norwich, NY, pp 355–427

    Chapter  Google Scholar 

  93. Verhaverbeke S, Messoussi R, Morinaga H et al (1995) Recent advances in wet processing technology and science. In: Proceedings Ultra Clean semicond. Processing technology materials research society symposium proceedings, vol. 386, Material research society

    Google Scholar 

  94. Kern W (1983) Hydrogen peroxide solutions for silicon wafer cleaning. RCA Eng 28:99–105

    Google Scholar 

  95. Kern W (1984) Purifying Si and SiO/sub 2/ surfaces with hydrogen peroxide. Semicond Int 7:94–99

    Google Scholar 

  96. Kern W (1990) The evolution of silicon wafer cleaning technology. J Electrochem Soc 137:1887–1892

    Article  CAS  Google Scholar 

  97. Shwartzman S, Mayer A, Kern W (1985) Megasonic particle removal from solid state wafers. RCA Review 46:81–105

    Google Scholar 

  98. Anttila OJ, Tilli MV, Schaekers M et al (1992) Metal contamination removal on silicon wafers using dilute acidic solutions. J Electrochem Soc 139:1180

    Article  CAS  Google Scholar 

  99. Meuris M, Heyns M, Kuper W et al (1991) Correlation of metal impurity content of ulsi chemicals and defect-related breakdown of gate oxides. ULSI Science and Technology, Pennington NJ, Electrochemical Society, pp 141–161

    Google Scholar 

  100. Smith SM, Varadarajan M, Christenson K (1996) The effects of dilute SC-1 and SC-2 chemistries on dielectric breakdown dor pre gate cleans in Proceedings fourth international symposium on cleaning technology in semiconductor device manufacturing. The Electrochem. Soc. Pennington, NJ

    Google Scholar 

  101. Ohmi TJ (1996) Total room temperature wet cleaning for si substrate surface. J Electrochem Soc 143:2957–2964

    Article  CAS  Google Scholar 

  102. Verhaverbeke S, Alay J, Mertens P et al (1992) Surface characterisation of Si after HF treatments and its influence on the dielectric breakdown of thermal oxides in proceedings on chemical surface preparation, passivation, and cleaning, growth and processing. In: Symposium B., Spring Mtg. of MRS, San Francisco

    Google Scholar 

  103. Verhaverbeke HS, Schmidt HF, Meuris M et al (1993) Technology Conference Semicon/Europe ’93, Geneva, Switzerland

    Google Scholar 

  104. Cussler EL (2005) Diffusion, mass transfer in fluid systems, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  105. Poling B, Prausnitz J, O’Connell J (2004) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  106. Taylor R, Krishna R (1993) Multicomponent mass transfer, 1st edn. Wiley, New York, NY

    Google Scholar 

  107. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  108. Bentzen A, Holt A, Christensen JS et al (2006) High concentration in diffusion of phosphorus in Si from a spray-on source. J Appl Phys 99:064502

    Article  CAS  Google Scholar 

  109. Vick G, Whittle K (1969) Solid solubility and diffusion coefficients of boron in silicon. J Electrochem Soc 116:1142–1144

    Article  CAS  Google Scholar 

  110. Frank FC, Turnbull D (1956) Mechanism of diffusion of copper in germanium. Phys Rev 104:617

    Article  CAS  Google Scholar 

  111. Chason E, Picraux ST, Poate JM et al (1997) Ion beams in silicon processing and characterization. J Appl Phys 81:6513–6561

    Article  CAS  Google Scholar 

  112. Parikh NR, Thompson DA, Carpenter GJC (1986) Ion implantation damage in CdS. Radiation Effects 98:289–300

    Article  CAS  Google Scholar 

  113. Current MI (1996) Ion implantation for silicon device manufacturing: a vacuum perspective. J Vac Sci Tech A 14:1115–1123

    Article  CAS  Google Scholar 

  114. Dearnaley G, Freeman JH, Nelson RS et al (1973) Implantation. American Elsevier Publishing Co., New York

    Google Scholar 

  115. Rimini E (1995) Ion implantation: basics to device fabrication. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  116. Rubin L, Morris W (1997) High-energy ion implanters and applications take off. Semicond Internat 20:77–85

    CAS  Google Scholar 

  117. Ryssel H, Ruge I (1986) Ion implantation. Wiley, New York

    Google Scholar 

  118. Ziegler JF (2000) Ion implantation: science and technology. Ion Implant Technology Co., Edgewater

    Google Scholar 

  119. Dresselhaus MS, Kalish R (1992) Ion implantation in diamond, Graphite and Related Materials. Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  120. Ziegler JF (1985) SRIM-stopping and range of ions in matter. Pergamon Press, New York

    Google Scholar 

  121. Chu PK, Qin S, Chan C et al (1996) Plasma immersion ion implantation—a fledgling technique for semiconductor processing. Mater Sci and Eng R 17:207–280

    Article  CAS  Google Scholar 

  122. Conrad JR, Radtke JL, Dodd RA, Worzala J, Tran NC (1987) Plasma source ion-implantation technique for surface modification. J Appl Phys 62:4591–4596

    Article  CAS  Google Scholar 

  123. Rej DJ, Faehl RJ, Matossian JN (1997) Key issues in plasma-source ion implantation. Surf Coat Technol 96:45–51

    Article  CAS  Google Scholar 

  124. Sheuer JT, Shamim M, Conrad JR (1990) Model of plasma source ion implantation in planar, cylindrical, and spherical geometries. J Appl Phys 67:1241–1245

    Article  Google Scholar 

  125. Liberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and material processing. Wiley, New York

    Google Scholar 

  126. Anders A (2000) Handbook of plasma immersion ion implantation. Wiley, New York

    Google Scholar 

  127. Qi B, Lau YY, Gilgenbach RM (2001) Extraction of ions from the matrix sheath in ablation-plasma ion implantation. Appl Phys Lett 78:706–708

    Article  CAS  Google Scholar 

  128. Powell CF (1966) Physical vapor deposition. Vapor deposition. In: Powell CF, Oxley JH, Blocher JM Jr(Ed) Wiley, New York, pp 221–248

    Google Scholar 

  129. Konuma M (1992) Film deposition by plasma techniques. Springer series on atoms and plasmas. Springer-Verlag, New York, vol 10

    Chapter  Google Scholar 

  130. Stuart RV (1983) Vacuum technology, thin films, and sputtering. Academic Press, New York

    Google Scholar 

  131. Kern W, Schuegraf KK (1988) Deposition technologies and applications: introduction and overview. handbook of thin-film deposition processes and techniques. In: Schuegraf KK (ed) Park ridge. Noyes, New Jersey, pp 1–25

    Google Scholar 

  132. Behrisch R (1983) Topics in applied physics: sputtering by particle bombardment II, vol 47. Springer-Verlag, Berlin, Heidelberg, New York

    Book  Google Scholar 

  133. Cuomo JJ, Rossnagel SM, Kaufman HR (1989) Handbook of ion beam processing technology. Noyes Publications

    Google Scholar 

  134. Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing, 2nd edn. Wiley, Hoboken, pp 308–310

    Book  Google Scholar 

  135. Sproul WD, Christie DJ, Carter DC (2005) Control of reactive sputtering processes. Thin Solid Films 491:1–17

    Article  CAS  Google Scholar 

  136. Gibson DR, Brinkley I, Wadell EM et al (2008) Closed field magnetron sputtering: new generation sputtering process for optical coatings. Proc SPIE Int Soc Opt Eng 7101:710108

    Google Scholar 

  137. Matthews A (2003) Plasma-based physical vapor deposition surface engineering processes. J Vac Sci Technol, A 21(5):S224–S231

    Article  CAS  Google Scholar 

  138. Berg S, Nyberg T (2005) Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 476:215–230

    Article  CAS  Google Scholar 

  139. Li N, Allain JP, Ruzic DN (2002) Enhancement of aluminum oxide physical vapor deposition with a secondary plasma. Surf Coat Technol 149:161–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Cortese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cortese, B. et al. (2019). Processing Techniques. In: Pech-Canul, M., Ravindra, N. (eds) Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-030-02171-9_2

Download citation

Publish with us

Policies and ethics