Skip to main content

Molecular Detection of Resistance to Biotic Stress Conditions in Spring Bread Wheat Cultivars

  • Conference paper
  • First Online:
Innovative Approaches and Applications for Sustainable Rural Development (HAICTA 2017)

Abstract

Biotic stress conditions are the most serious obstacle in bread wheat cultivation resulting in yield reduction and safety problems (toxin production) for consumers. For this reason, identification of resistant cultivars and their respective genes is a main prerequisite in most breeding programs. Into this study and in order to exploit the benefits of molecular technology, 9 Hellenic and 93 Ukrainian bread wheat cultivars were analyzed to determine the responsible alleles for some important diseases in wheat. Among the Hellenic cultivars, carriers of resistance-associated alleles of the Lr34/Yr18/Pm38/Sr57/Bdv1 (a rare gene among the European bread wheat cultivars), Tsn1, Tsc2, and TDF_076_2D genes were identified. Four of the studied Hellenic cultivars carry the 1BL.1RS wheat-rye chromosome translocation of the ‘Kavkaz’ type proved to be resistant to the stem rust and especially to the dangerous Sicilian race TTTTF due mainly to the presence of the Sr31 gene. Among the Ukrainian cultivars, the toxin A insensitivity allele of the Tsn1 gene is predominant. Οf the nine Ukrainian spring cultivars containing wheat-rye translocations, seven were found to possess the 1BL.1RS and two the ‘Amigo’-type 1AL.1RS translocation. The previous two cultivars carry the gene Sr1RS Amigo conferring resistance to dangerous stem rust Ug99 biotypes. One cultivar (‘Vyshyvanka’) was found to carry a 1BL.1RS translocation distinct from 1BL.1RS of the ‘Kavkaz’ type and may carry novel rye disease resistance genes. The results of the examined germplasm regarding disease resistance gene alleles could be helpful for breeders who are looking for sources of disease resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

AFLP:

Amplified fragment length polymorphism

ABC:

ATP-binding cassette

APR:

Adult plant resistance

KASP:

Competitive allele-specific PCR

MAS:

Marker-assisted selection

NAAS:

National Academy of Agrarian Sciences

PCR:

Polymerase chain reaction

PDR:

Pleiotropic drug resistance

RFLP:

Restriction fragment length polymorphism

RAPD:

Random amplified polymorphic DNA

QTL:

Quantitative trait locus

SCAR:

Sequence characterized amplified region

SSR:

Short sequence repeat

Literature

  • Abeysekara NS, Friesen TL, Liu Z, McClean PE, Faris JD (2010) Marker development and saturation mapping of the tan spot Ptr ToxB sensitivity locus Tsc2 in hexaploid wheat. Plant Genome 3:179–189

    Article  CAS  Google Scholar 

  • Aktar-Uz-Zaman M, Tuhina-Khatun M, Hanafi MM, Sahebi M (2017) Genetic analysis of rust resistance genes in global wheat cultivars: an overview. Biotechnol Biotechnol Equip 31(3):431–445

    Article  Google Scholar 

  • Anonymous (2017) Caution: risk of wheat stem rust in Mediterranean basin in the forthcoming 2017 crop season following outbreaks on Sicily in 2016. http://wheatrust.org/news-and-events/news-item/artikel/caution-risk-of-stem-rust-in-eastern-mediterranean-basin-in-the-forthcoming-2017-season-due-to-ou/

  • Bent AF, Mackey D (2009) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Plant Biol 60:379–406

    Article  Google Scholar 

  • Bhattacharya S (2017) Deadly new wheat disease threatens Europe’s crops. Nature 542:145–146. https://doi.org/10.1038/nature.2017.21424

    Article  CAS  Google Scholar 

  • Dakouri A, McCallum BD, Walichnowski AZ, Cloutier S (2010) Fine-mapping of the leaf rust Lr34 locus in Triticum aestivum (L.) and characterization of large germplasm collections support the ABC transporter as essential for gene function. Theor Appl Genet 121:373–384

    Article  CAS  Google Scholar 

  • Devos KM, Gale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet 84:567–572. https://doi.org/10.1007/BF00224153

    Article  CAS  Google Scholar 

  • Diethelm M, Rhiel M, Wagner C, Mikolajewski S, Groth J, Hartl L, Friedt W, Schweizer G (2012) Tissues of European winter wheat after challenge with G. zeae. Euphytica 186(1):103–114

    Article  CAS  Google Scholar 

  • Diethelm M, Schmolke M, Groth J, Friedt W, Schweizer G, Hartl L (2014) Association of allelic variation in two NPR1-like genes with Fusarium head blight resistance in wheat. Mol Breed 34:31–43

    Article  CAS  Google Scholar 

  • Duveiller E, Nicol JM, Singh RS (2007) The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157:417–430

    Article  Google Scholar 

  • Dyck PL (1977) Genetics of leaf rust reaction in three introductions of bread wheat. Can J Genet Cytol 19:711–716

    Article  Google Scholar 

  • Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in bread wheat. Genome 29:467–469

    Article  Google Scholar 

  • Dyck PL (1993) Inheritance of leaf rust and stem rust resistance in ‘Roblin’ wheat. Genome 36:289–293

    Article  CAS  Google Scholar 

  • Ehdale B, Whitkus RW, Waines JG (2003) Root biomass, water-use efficiency, and performance of wheat rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci 43:710–717

    Article  Google Scholar 

  • Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:641: 1–13. https://doi.org/10.3389/fpls.2014.00641

    Article  Google Scholar 

  • Faris DJ, Anderson JA, Francl LJ, Jordah JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463

    Article  CAS  Google Scholar 

  • Faris JD, Friesen TL (2009) Reevaluation of a tetraploid wheat population indicates that the Tsn1–ToxA interaction is the only factor governing Stagonospora nodorum blotch susceptibility. Phytopathology 99:906–912

    Article  CAS  Google Scholar 

  • Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107:13544–13549

    Article  CAS  Google Scholar 

  • Fernandez MR, DePauw RM, Clarke JM, Fox SL (1998) Discoloration of wheat kernels by Pyrenophora tritici-repentis. Can J Plant Pathol 20:380–383

    Article  Google Scholar 

  • Figueroa M, Hammond-Kosack KE, Solomon PS (2017) A review of wheat diseases—a field perspective. Mol Plant Pathol 19(6). https://doi.org/10.1111/mpp.12618

    Article  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to PtrToxB in wheat. Theor Appl Genet 109:464–471

    Article  CAS  Google Scholar 

  • Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. Springer, Dordrecht, pp 1–24

    Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster A-M, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvořák J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168(2):1087–1096. https://doi.org/10.1534/genetics.104.034769

    Article  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  Google Scholar 

  • Glowacki S, Macioszek VK, Kononowicz AK (2010) R proteins as fundamentals of plant innate immunity. Cell Mol Biol Lett 16(1):1–24. https://doi.org/10.2478/s11658-010-0024-2

    Article  CAS  Google Scholar 

  • Golkari S, Gilbert J, Ban T, Procunier JD (2009) QTL-specific microarray gene expression analysis of wheat resistance to Fusarium head blight in Sumai-3 and two susceptible NILs. Genome 52(5):409–418

    Article  CAS  Google Scholar 

  • Goyal A, Prasad R (2010) Some important fungal diseases and their impact on wheat production. In: Araya A, Edith Perelló A (eds) Management of fungal plant pathogens CABI, pp 362–374

    Google Scholar 

  • Gupta P, Langridge P, Mir R (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161. https://doi.org/10.1007/s11032-009-9359-7

    Article  Google Scholar 

  • Han FP, Fedak G, Ouellet T, Dan H, Somers DJ (2005) Mapping of genes expressed in Fusarium graminearum-infected heads of wheat cultivar ‘Frontana’. Genome 48(1):88–96

    Article  CAS  Google Scholar 

  • Howell T, Hale I, Jankuloski L, Bonafede M, Gilbert M, Dubcovsky J (2014) Mapping a region within the 1RS.1BL translocation in bread wheat affecting grain yield and canopy water status. Theor Appl Genet 127:2695–2709

    Article  Google Scholar 

  • Jia M, Guan J, Zhai Z, Geng S, Zhang X, Mao L, Li A (2018) Wheat functional genomics in the era of next generation sequencing: an update. Crop J 6(1):7–14

    Article  Google Scholar 

  • Karelov AV, Pirko YV, Kozub NA, Sozinov IA, Pirko NN, Litvinenko NA, Lyfenko SF, Koliuchii VT, Blume YB, Sozinov AA (2011) Identification of the allelic state of the Lr34 leaf rust resistance gene in soft winter wheat cultivars developed in Ukraine. Cytol Genet 45(5):271–276. https://doi.org/10.3103/S0095452711050069

    Article  Google Scholar 

  • Kiszonas AM, Morris CF (2018) Wheat breeding for quality: a historical review. Cereal Chem 95:17–34. https://doi.org/10.1094/CCHEM-05-17-0103-FI

    Article  CAS  Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2013) Whole genome association mapping of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). PLoS ONE 8(2):e57500. https://doi.org/10.1371/journal.pone.0057500

    Article  CAS  Google Scholar 

  • Kolmer JA (1996) Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol 34:435–455

    Article  CAS  Google Scholar 

  • Kolmer JA, Singh RP, Garvin DF, Viccars L, William HM, Huerta-Espino J, Ogbonnaya FC, Raman H, Orford S, Bariana HS, Lagudah ES (2008) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci 48:1841–1852

    Article  CAS  Google Scholar 

  • Kozub NA, Motsnyi II, Sozinov IA, Blume YB, Sozinov AA (2014) Mapping a new secalin locus on the rye 1RS arm. Cytol Genet 48(4):203–207

    Article  Google Scholar 

  • Kozub NA, Sozinov IA, Sobko TA, Kolyuchii VT, Kuptsov SV, Sozinov AA (2009) Variation at storage protein loci in winter bread wheat cultivars of the Central Forest-Steppe of Ukraine. Cytol Genet 43:55–62

    Article  Google Scholar 

  • Kozub NA, Sozinov IA, Karelov AV, Blume YB, Sozinov AA (2017) Diversity of Ukrainian winter bread wheat varieties with respect to storage protein loci and molecular markers for disease resistance genes. Cytol Genet 51(2):117–129

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  • Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81–91

    Article  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    Article  CAS  Google Scholar 

  • Langridge P, Lagudah ES, Holton TA, Appels RS, Sharp PJ, Chalmers KJ (2001) Trends in genetic and genome analyses in wheat: a review. Crop Pasture Sci 52:1043–1077. https://doi.org/10.1071/AR01082

    Article  CAS  Google Scholar 

  • Lamari L, Strelkov SE, Yahyaoui A, Orabi J, Smith RB (2003) The identification of two new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat. Phytopathology 93:391–396

    Article  CAS  Google Scholar 

  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterházy A, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact 18:1318–1324

    Article  CAS  Google Scholar 

  • Limpert E, Felsenstein FG, Andrivon D (1987) Analysis of virulence in populations of wheat Mildew in Europe. J Phytopathol 120:1–8

    Article  Google Scholar 

  • Liu Z, Gao Y, Kim YM, Faris JD, Shelver WL, de Wit PJ, Xu SS, Friesen TL (2016) SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual-function protein that facilitates infection while protecting from wheat-produced chitinases. New Phytol 211(3):1052–1064. https://doi.org/10.1111/nph.13959

    Article  CAS  Google Scholar 

  • Manning VA, Hardison LK, Ciuffetti LM (2007) Ptr ToxA interacts with a chloroplast-localized protein. Mol Plant Microbe Interact 20(2):168–177

    Article  CAS  Google Scholar 

  • Martin BG, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  Google Scholar 

  • McIntosh RA (1992) Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathol 41:523–527

    Article  Google Scholar 

  • McIntosh RA (2013) Catalogue of gene symbols. Gene Catalogue. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp. MacGene

  • McIntosh RA, Dubcovsky J, Rogers WJ. Morris C, Appels R, Xia XC (2017) Сatalogue of gene symbols for wheat: 2017 Supplement. URL:: https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. Plant Breeding Institute, The University of Sydney CSIRO Australia

    Book  Google Scholar 

  • Meinhardt SW, Cheng W, Kwon CY, Donohue CM, Rasmussen JB (2002) Role of the Arginyl-Glycyl-Aspartic motif in the action of Ptr ToxA produced by Pyrenophora tritici-repentis. Plant Physiol 130:1545–1551

    Article  CAS  Google Scholar 

  • Metakovsky EV (1991) Gliadin allele identification in bread wheat II Catalogue of gliadin alleles in bread wheat. J Genet Breed 45:325–344

    Google Scholar 

  • Mesterhazy A, Bartok T, Mirocha CG, Komoroczy R (2008) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed 118:97–110

    Article  Google Scholar 

  • Moreno-Sevilla B, Baenzinger PS, Peterson CJ, Graybosch RA, McVey DV (1995) The 1BL/1RS translocation: agronomic performance of F3-derived line from a winter wheat cross. Crop Sci 35(4):1051–1055

    Article  Google Scholar 

  • Muthamilarasan M, Prasad MJ (2014) An overview of wheat genome sequencing and its implications for crop improvement. J Genet 93:619–622. https://doi.org/10.1007/s12041-014-0455-z

    Article  Google Scholar 

  • Nevo E, Payne PI (1987) Wheat storage proteins: diversity of HMW glutenin subunits in wild emmer from Israel. Theor Appl Genet 74:827–836. https://doi.org/10.1007/BF00247564

    Article  CAS  Google Scholar 

  • Nesic K, Ivanovic S, Nesic V (2014) Fusarial toxins: secondary metabolites of Fusarium fungi. Rev Environ Contam Toxicol 228:101–120

    CAS  Google Scholar 

  • Parks R, Carbone I, Murphy JP, Marshall D, Cowger C (2008) Virulence structure of the Eastern US wheat powdery mildew population. Plant Dis 92(7):1074–1082

    Article  Google Scholar 

  • Pretorius ZA (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f sp tritici in Uganda. Plant Dis 84(2):203

    Article  Google Scholar 

  • Rabinovich SV (1998) Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340

    Article  Google Scholar 

  • Rasheed A, Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X, He Z (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843. https://doi.org/10.1007/s00122-016-2743-x

    Article  CAS  Google Scholar 

  • Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    Article  CAS  Google Scholar 

  • Sarma GN, Manning VA, Ciuffetti LM, Karplus PA (2005) Structure of PtrToxA: an RGD-Containing host-selective toxin from Pyrenophora tritici-repentis. Plant Cell 17:3190–3202

    Article  CAS  Google Scholar 

  • Sears ER (1969) Wheat cytogenetics. Annu Rev Genet 3:451–468

    Article  Google Scholar 

  • Sebesta EE, Wood EA (1978) Transfer of greenbug resistance from rye to wheat with X-rays Agron Abstr. American Society of Agronomy, Madison, WI, pp 61–62

    Google Scholar 

  • Sebesta EE, Wood EA, Porter DR, Webster JA, Smith EL (1995) Registration of amigo wheat germplasm resistant to greenbug. Crop Sci 35:293. https://doi.org/10.2135/cropsci19950011183X003500010074x

    Article  Google Scholar 

  • Schlegel R (2016) Current list of wheats with rye and alien introgression. V05–16: 1–18. http://wwwrye-gene-map.de/rye-introgression

  • Schweiger W, Steiner B, Ametz C, Siegwart G, Wiesenberger G, Berthiller F, Lemmens M, Jia H, Adam G, Muehlbauer GJ, Kreil DP, Buerstmayr H (2013) Transcriptomic characterization of two major Fusarium resistance quantitative loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes. Mol Plant Pathol 14(8):772–785

    Article  CAS  Google Scholar 

  • Shabeer A, Bockus WW (1988) Tan spot effects on yield and yield components relative to growth stage in winter wheat. Plant Dis 72:599–602

    Article  Google Scholar 

  • Singh RP (1992) Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology 82:835–838

    Article  Google Scholar 

  • Singh RP (1993) Genetic association of gene Bdv1 for tolerance to barley yellow dwarf virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat. Plant Dis 77:1103–1106

    Article  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR, Lan C, Hovmøller MS (2015) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–884

    Article  Google Scholar 

  • Sobko TA, Poperelya FA (1986) The frequency of alleles of gliadin-coding loci in different cultivars of winter bread wheat. Visnik Silskogospodarskoi Nauki 5:84–87 (in Ukrainian)

    Google Scholar 

  • Sozinov AA, Poperelya FA (1980) Genetic classification of prolamines and its use for plant breeding. Annales de Technologie Agricole 29:229–245

    CAS  Google Scholar 

  • Tai Y-S, Bragg J, Meinhardt SW (2007) Functional characterization of ToxA and molecular identification of its intracellular targeting protein in wheat. Am J Plant Physiol 2:76–89

    Article  CAS  Google Scholar 

  • Tang C, Xu Q, Zhao M, Wang X, Kang Z (2018) Understanding the lifestyles and pathogenicity mechanisms of obligate biotrophic fungi in wheat: the emerging genomics era. Crop J 6(1):60–67

    Article  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257–264. https://doi.org/10.1038/nbt0389-257

    Article  CAS  Google Scholar 

  • Tian J, Chen J, Chen G, Wu P, Zhang H, Zhao Y (2015) Genetic analyses of wheat and molecular marker. Assisted Breeding Volume 2. Springer Press, The Netherlands 1st ed, XXVII, 321 p

    Google Scholar 

  • Villareal RL, Rajaram S, MuJeeb-Kazi A, Del-Toro E (1991) The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L). Plant Breed 106:77–81

    Article  Google Scholar 

  • Xynias ΙΝ, Kozub NO, Sozinov IA (2006) Seed storage protein composition of Hellenic bread wheat cultivars. Plant Breed 125:408–410

    Article  CAS  Google Scholar 

  • Yadav PS, Mishra VK, Arun B, Chand R, Vishwakarma MK, Vasistha NK, Mishra AN, Kalappanavar IK, Joshi AK (2015) Enhanced resistance in wheat against stem rust achieved by marker assisted backcrossing involving three independent Sr genes. Curr Plant Biol 2:25–33

    Article  Google Scholar 

  • Yates F (1934) Contingency table involving small numbers and the χ2 test. Suppl J R Stat Soc 1(2):217–235

    Article  Google Scholar 

  • Zhang Y, Lubberstedt T, Xu M (2013) The genetic and molecular basis of plant resistance to pathogens. J Genet Genomics 40:23–35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis N. Xynias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karelov, A., Kozub, N., Sozinov, I., Sozinova, O., Mavromatis, A.G., Xynias, I.N. (2019). Molecular Detection of Resistance to Biotic Stress Conditions in Spring Bread Wheat Cultivars. In: Theodoridis, A., Ragkos, A., Salampasis, M. (eds) Innovative Approaches and Applications for Sustainable Rural Development. HAICTA 2017. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02312-6_18

Download citation

Publish with us

Policies and ethics