Skip to main content

Phytoremediation and Fungi: An Underexplored Binomial

  • Chapter
  • First Online:
Approaches in Bioremediation

Abstract

As physical and chemical remediation of xenobiotics is costly and most of the time inefficient, bioremediation has attracted attention in recent years. Bioremediation is the treatment of xenobiotic wastes with living organisms or their parts. Bioremediation with plants has been applied mainly to alleviate pollution by heavy metals, but it has also proven useful with other kinds of xenobiotics, such as polycyclic aromatic hydrocarbons, pesticides, dyes, etc. Plants use several mechanisms for bioremediation of different compounds: phytovolatilization, phytostabilization, phytodegradation, and rhizodegradation. Fungi are ideal for phytoremediation since they can coremove both organic and inorganic pollutants. Additional effort is necessary in the investigation of fungi-based phytoremediation of soil cocontaminated with heavy metals and organic compounds since studies on this are scarce and poli-polluted environments are more frequently found. Mycophytoremediation is a potentially effective strategy for the remediation of soils and waters polluted with xenobiotics. It is an emerging low-cost technology that still has to be explored, but which has already proven to be efficient, since very high percentages of persistent organic pollutants or heavy metals were shown to have been removed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas S, Ismail I, Mostafa T, Abbas S (2014) Biosorption of heavy metals: review. J Chem Sci Technol 3:74–102

    Google Scholar 

  • Alarcón A, Delgadillo-Martínez J, Franco-Ramírez A, Davies FT, Ferrera-Cerrato R (2006) Influence of two polycyclic aromatic hydrocarbons on spore germination, and phytoremediation potential of Gigaspora margarita-Echynochloa polystachya symbiosis in benzo[a]pyrene-polluted substrate. Rev Int Contam Ambient 22:39–47

    Google Scholar 

  • Alegbeleye OO, Opeolu BO, Jackson VA (2017) Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manag 60:758–783

    Article  Google Scholar 

  • Amir H, Lagrange A, Hassaïne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585–595

    Article  CAS  PubMed  Google Scholar 

  • Arslan M, Imran A, Khan QM, Afzal M (2017) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res 24:4322–4336

    Article  Google Scholar 

  • Audet P, Charest C (2006) Effects of AM colonization on “wild tobacco” plants grown in zinc-contaminated soil. Mycorrhiza 16:277–283

    Article  CAS  PubMed  Google Scholar 

  • Balcázar-López E, Méndez-Lorenzo LH, Batista-García RA, Esquivel-Naranjo U, Ayala M, Kumar VV, Savary O, Cabana H, Herrera-Estrella A, Folch-Mallol JL (2016) Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride. PLoS One 11:e0147997

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Article  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9 http://doi.org/101371/journalppat1003221

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  PubMed  Google Scholar 

  • Chen B, Ma Q, Tan C, Lim TT, Huang L, Zhang H (2015a) Carbon-based sorbents with three-dimensional architectures for water remediation. Small 11:3319–3336

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015b) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33:745–755

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • de Gonzalo G, Colpa DI, Habib MHM, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Article  PubMed  Google Scholar 

  • De los Ríos A, Echavarri-Erasun B, Lacorte S, Sánchez-Ávila J, De Jonge M, Blust R, Orbea A, Juanes JA, Cajaraville MP (2016) Relationships between lines of evidence of pollution in estuarine areas: linking contaminant levels with biomarker responses in mussels and with structure of macroinvertebrate benthic communities. Mar Environ Res 121:49–63

    Article  PubMed  Google Scholar 

  • Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106

    Article  CAS  PubMed  Google Scholar 

  • Dildey ODF, Broetto L, Rissato BB, Gonçalves-Trevisoli EDV, Coltro-Roncato S, Dal’Maso EG, Webler TFB (2016) Trichoderma-bean interaction: defense enzymes activity and endophytism. Afr J Agric Res 11(43):4286–4292

    Article  CAS  Google Scholar 

  • Dixit R, Wasiullah Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Gao DW, Wen ZD (2016) Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Total Environ 541:986–1001

    Article  CAS  PubMed  Google Scholar 

  • Godheja J, Shekhar SK, Siddiqui SA, Modi DR (2016) Xenobiotic compounds present in soil and water: a review on remediation strategies. J Environ Anal Toxicol 6:5

    Article  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2012) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87:1077–1090

    Article  CAS  PubMed  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445–446:237–260

    Article  PubMed  Google Scholar 

  • Gong Y, Tang J, Zhao D (2016) Application of iron sulfide particles for groundwater and soil remediation: a review. Water Res 89:309–320

    Article  CAS  PubMed  Google Scholar 

  • Goodin JD, Webber MD (1995) Persistence and fate of anthracene and benzo(a)pyrene in municipal sludge treated soil. J Environ Qual 24:271–278

    Article  CAS  Google Scholar 

  • Grosser R, Warshawsky D, Vestal R (1995) Mineralization of polycyclic and N-heterocyclic aromatic compounds in hydrocarbon-contaminated soils. Environ Toxicol Chem 14:375–382

    Article  CAS  Google Scholar 

  • Günther T, Dornberger U, Fritsche W (1996) Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33(2):203–215

    Article  PubMed  Google Scholar 

  • Hernández-Eligio A, Andrade Á, Soto L, Morett E, Juárez K (2017) The unphosphorylated form of the PilR two-component system regulates pilA gene expression in Geobacter sulfurreducens. Environ Sci Pollut Res 24:25693–25701

    Article  Google Scholar 

  • Hernández-Ortega HA, Alarcón A, Ferrera-Cerrato R, Zavaleta-Mancera HA, López-Delgado HA, Mendoza-López MR (2012) Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. J Environ Manag 95:S319–S324

    Article  Google Scholar 

  • Hlihor RM, Gavrilescu M, Tavares T, Fvier L, Olivieri G (2017) Editorial bioremediation: an overview on current practices, advances, and new perspectives in environmental pollution treatment Hindawi. Biomed Res Int 2:3–5

    Google Scholar 

  • Hong Y, Liao D, Chen J, Khan S, Su J, Li H (2015) A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation. Environ Sci Pollut Res 22:7071–7081

    Article  CAS  Google Scholar 

  • Joanna Ż, Pi A, Marchlewicz A, Hupert-kocurek K, Wojcieszy D (2018) Organic micropollutants paracetamol and ibuprofen – toxicity, biodegradation, and genetic background of their utilization by bacteria. Environ Sci Pollut Res Int 25:21498–21524

    Article  Google Scholar 

  • Joner E, Leyval C (2003) Phytoremediation of organic pollutants using mycorrhizal plants: a new aspect of rhizosphere interactions. Agronomie EDP Sci 23(5-6):495–502

    Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    Article  CAS  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation – an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7:503–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Article  Google Scholar 

  • Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N, Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen KV, McTeer MA, Murray CJL, Ndahimananjara JD, Perera F, Potočnik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, van Schayck OCP, Yadama GN, Yumkella K, Zhong M (2017) The lancet commission on pollution and health. Lancet 391(3–9):462–512

    PubMed  Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojta-Wasilewska M, Cho N-S, Hofrichter M, Rogalski J, Wasilewska W (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li X, Xiang L, Zhao HM, Li YW, Cai QY, Zhu L, Mo CH, Wong MH (2018) Phytoremediation of soil co-contaminated with Cd and BDE-209 using hyperaccumulator enhanced by AM fungi and surfactant. Sci Total Environ 613–614:447–455

    Article  PubMed  Google Scholar 

  • Lim MW, Von Lau E, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil – present works and future directions. Mar Pollut Bull 109:14–45

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Lerch RN, Garrett HE, George MF (2005) Incorporating forage grasses in riparian buffers for bioremediation of atrazine, isoxaflutole and nitrate in Missouri. Agrofor Syst 63:91–99

    Article  Google Scholar 

  • Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q, Ye Z, Jing Y (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49

    Article  Google Scholar 

  • Madariaga-Navarrete A, Rodríguez-Pastrana BR, Villagómez-Ibarra JR, Acevedo-Sandoval OA, Perry G, Islas-Pelcastre M (2017) Bioremediation model for atrazine contaminated agricultural soils using phytoremediation (using Phaseolus vulgaris L) and a locally adapted microbial consortium. J Environ Sci Heal B Pestic Food Contam Agric Wastes 52:367–375

    Article  CAS  Google Scholar 

  • Mena E, Villaseñor J, Rodrigo MA, Cañizares P (2016) Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: effect of periodic polarity reversal and voltage gradient. Chem Eng J 299:30–36

    Article  CAS  Google Scholar 

  • Mohsenzadeh F, Nasseri S, Mesdaghinia A, Nabizadeh R, Zafari D, Khodakaramian G, Chehregani A (2010) Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicol Environ Saf 73:613–619

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Olvera-Velona A, Folch-Mallo JL (2011) Pesticides in the environment: impacts and their biodegradation as a strategy for residues treatment. In: Pesticides, Intech Open, p 22

    Google Scholar 

  • Pelagio-Flores R, Esparza-Reynoso S, Garnica-Vergara A, López-Bucio J, Herrera-Estrella A (2017) Trichoderma-induced acidification is an early trigger for changes in Arabidopsis root growth and determines fungal phytostimulation. Front Plant Sci 8:1–13

    Article  Google Scholar 

  • Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer International Publishing, Cham, Switzerland https://doi.org/10.1007/978-3-319-68957-9

  • Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer International Publishing, Cham, Switzerland https://www.springer.com/us/book/9783319773858

  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L)]. J Hazard Mater 177:465–474

    Article  CAS  PubMed  Google Scholar 

  • Rajtor M, Piotrowska-Seget Z (2016) Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere 162:105–116

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen G, Olsen RA (2004) Sorption and biological removal of creosote-contaminants from groundwater in soil/sand vegetated with orchard grass (Dactylis glomerata). Adv Environ Res 8:313–327

    Article  CAS  Google Scholar 

  • Reddy KR (2008) Physical and chemical groundwater remediation technologies. In: Overexploitation contam shar groundw resour. Springer, Dordrecht, pp 257–274

    Chapter  Google Scholar 

  • Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299

    Article  CAS  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  CAS  PubMed  Google Scholar 

  • Salami AO, Opadiran AE, Idowu OO (2017) Bioremediation potentials of Trichoderma harzianum and Glomus mosseae on the growth of Capsicum annum L grown on soil irrigated with water from mining site. Int J Biosci Agric Technol 8(9):64–72

    Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26

    Article  CAS  Google Scholar 

  • Sánchez-Avila JI, Kretzschmar T (2017) Simultaneous determination of polycyclic aromatic hydrocarbons, alkylphenols, phthalate esters and polychlorinated biphenyls in environmental waters based on headspace–solid phase microextraction followed by gas chromatography–tandem mass spectrometry. J Environ Anal Chem 4:11

    Google Scholar 

  • Sánchez-Avila J, Tauler R, Lacorte S (2012) Organic micropollutants in coastal waters from NW Mediterranean Sea: sources distribution and potential risk. Environ Int 46:50–62

    Article  PubMed  Google Scholar 

  • Sharma S, Prasad R, Varma A, Sharma AK (2017) Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian Journal of Plant Pathology https://doi.org/10.3923/ajppaj.2017

  • Siddiquee S, Rovina K, Al AS, Naher L, Suryani S, Chaikaew P (2015) Microbial & biochemical technology heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. Microbiol Biochem Technol 7:384–393

    Article  CAS  Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) ©19 9 3 Nature Publishing Group Nature 363:67–69

    Google Scholar 

  • Singh P, Jain R, Srivastava N, Borthakur A, Pal DB, Singh R, Madhav S, Srivastava P, Tiwary D, Mishra PK (2017) Current and emerging trends in bioremediation of petrochemical waste: a review. Crit Rev Environ Sci Technol 47:155–201

    Article  Google Scholar 

  • Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Thiruvenkatachari R, Vigneswaran S, Naidu R (2008) Permeable reactive barrier for groundwater remediation. J Ind Eng Chem 14:145–156

    Article  CAS  Google Scholar 

  • Tripathi V, Edrisi SA, O’Donovan A, Gupta VK, Abhilash PC (2016) Bioremediation for fueling the biobased economy. Trends Biotechnol 34:775–777

    Article  CAS  PubMed  Google Scholar 

  • Valderrama B, Oliver P, Medrano-Soto A, Vazquez-Duhalt R (2003) Evolutionary and structural diversity of fungal laccases. Antonie Van Leeuwenhoek 84:289–299

    Article  CAS  PubMed  Google Scholar 

  • Van Bloois E, Torres Pazmiño DE, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430

    Article  PubMed  Google Scholar 

  • Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by mt-2: evidence for the existence of a TOL plasmid metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong CC, Wu SC, Kuek C, Khan AG, Wong MH (2007) The role of mycorrhizae associated with vetiver grown in Pb-/ Zn-contaminated soils: greenhouse study. Restor Ecol 15:60–67

    Article  Google Scholar 

  • Worsey MJ, Williams PA (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol 124:7–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J, Xi Q (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674

    Article  CAS  PubMed  Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608

    Article  CAS  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Alberto Batista-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Otero-Blanca, A., Folch-Mallol, J.L., Lira-Ruan, V., del Rayo Sánchez Carbente, M., Batista-García, R.A. (2018). Phytoremediation and Fungi: An Underexplored Binomial. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_5

Download citation

Publish with us

Policies and ethics