Skip to main content

Exploration of Macrofungi in Sub-Tropical Semi-Evergreen Indian Forest Ecosystems

  • Chapter
  • First Online:
Biology of Macrofungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Mushrooms have been known as additional food worldwide for their high nutritional content and medicinal importance for instance anticancer, anti-diabetic, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, antiviral and cardiovascular properties. Furthermore, there are several mushroom extracts that have been reported for their potential adjuvants in the radiation treatments and chemotherapy. In addition, several mushrooms contain various bioactive compounds such as alkaloids, flavonoids, polyglucan, polyphenol, polysaccharides, polyketides, steroids, terpenoids and dietary fibers that showed numerous pharmacological activities. The exploration of mushroom biodiversity in sub-tropical semi-evergreen Indian forest ecosystems especially in Mizoram state is of utmost importance as this region is still unexplored with regard to mushroom diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari MK (2000) Mushrooms of Nepal. P.U. Printers, Kathmandu

    Google Scholar 

  • Alessandra Z, Domizia D, Luigi RG, Simonetta F, Niccol BGM, Mirco I, Asuncion M, Lahsen K, Abdulhakim B, Federica P, Riccardo C, Giuseppe V (2014) Hypogeous fungi in Mediterranean Maquis, Arid and Semi-Arid forests. Mycorrhiza 24(6):481–486

    Article  Google Scholar 

  • Alves MJ, Ferreira ICFR, Froufe HJC, Abreu RMV, Martins A, Pintado M (2013) Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and dochking studies. J Appl Microbiol 115:346–357

    Article  CAS  PubMed  Google Scholar 

  • Arora D (1991) All that rain promises and more: a hip pocket guide to Western Mushrooms. Ten Speed Press, Berkeley

    Google Scholar 

  • Barros L, Calhelha RC, Vaz JA, Ferreira ICFR, Baptista P, Estevinho LM (2007) Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. Eur Food Res Technol 225:151–156

    Article  CAS  Google Scholar 

  • Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153

    Article  CAS  PubMed  Google Scholar 

  • Chang ST, Miles PG (1992) Mushroom biology - A new discipline. The Mycologist 6:64–65

    Article  Google Scholar 

  • Dimitrijevic MV, Mitic VD, Cvetkovic JS, Stankov Jovanovic VP, Mutic JJ, Nikolic Mandic SD (2016) Update on element content profiles in eleven wild edible mushrooms from family Boletaceae. Eur Food Res Technol 242:1–10

    Article  CAS  Google Scholar 

  • Eswaran A, Ramabadran R (2000) Studies on some physiological, cultural and post harvest aspects of oyster mushroom, Pleurotus eous. Trop Agri Res 12:360–374

    Google Scholar 

  • Ferreira ICFR, Barros L, Abreu RMV (2009) Antioxidants in wild mushrooms. Cur Med Chem 16:1543–1560

    Article  CAS  Google Scholar 

  • Ferris R, Peace AJ, Newton AC (2000) Macro fungal communities of low land Scots pine and Norway spruce plantations in England: relationships with site factors and stand structure. For Ecol Manag 131:255–267

    Article  Google Scholar 

  • Gadd GM (2007) Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  PubMed  Google Scholar 

  • Garibay-Orijel R, Cordova J, Cifuentes J, Valenzuela R, Estrada-Torres E A, Kong A (2009) Integrating wild mushrooms use into a model of sustainable management for indigenous community forests. For Ecol Manag 258:122–131

    Article  Google Scholar 

  • Gast GH, Jansen E, Bierling J, Haanstra L (1988) Heavy metals in mushroom and their relationship with soil characteristics. Chemosphere 60(4):789–799

    Article  Google Scholar 

  • Ghate SD, Sridhar KR (2015) Contribution to the knowledge on macrofungi in mangroves of the southwest India. Plant Biosyst 150:977–986

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105(12):1422–1432

    Article  Google Scholar 

  • Izlam MZ, Rahman MH, Hafiz F (2009) Cultivation of oyster mushroom (Pleurotus flabellatus) on different substrates. Int J Sustain Crop Prod 4(1):45–48

    Google Scholar 

  • Krishna G, Samatha B, Himabindu SVSSSLN, Prasad MR, Rajitha B, Charaya MAS (2015) Macrofungi in some forests of Telengana State, India. J Mycol 382476:1–7

    Article  Google Scholar 

  • Lallawmsanga, Passari AK, Mishra VK, Leo VV, Singh BP, Meyyappan GV, Gupta VK, Uthandi S, Upadhyay RC (2016) Antimicrobial potential, identification and phylogenetic affiliation of wild mushrooms from two sub-tropical semi-evergreen Indian forest ecosystems. PLoS One 11(11):e0166368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian B, Zang J, Hou W, Yuan S, Smith DL (2008) PCR-based sensitive detection of the edible fungus Boletus edulis from rDNA ITS sequences. Electron J Biotechnol 11(3):1–8

    Article  Google Scholar 

  • Liu B, Huang Q, Cai H, Guo X, Wang T, Gui M (2015) Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem 188:294–300

    Article  CAS  PubMed  Google Scholar 

  • Manoharachary CS, Singh KR, Adholeya A, Suryanarayanan TS, Rawat S, Johri BN (2005) Fungal biodiversity: distribution, conservation and prospecting of fungi from India. Curr Sci 89:58–71

    Google Scholar 

  • Mei ZQ, Fu SY, Yu HQ, Yang LQ, Duan CG, Liu XY, Gong S, Fu JJ (2014) Genetic characterization and authentication of Dimocarpus longan Lour. using an improved RAPD technique. Genet Mol Res 13(1):1447–1455

    Article  CAS  PubMed  Google Scholar 

  • Mueller GM, Schmit JP, Huhndorf SM, Ryvarden L, O’Dell TE, Lodge JE, Leacock PR, Mata M, Umana L, Wu Q, Czederpiltz DL (2004) Recommended protocols for sampling macrofungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of Fungi: inventory and monitoring methods. Elsevier Academic Press, San Diego, pp 168–172

    Google Scholar 

  • Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE, Halling RE, Hjortstam K, Iturriaga T, Larsson KH, Lodge DJ, May TW, Minter D, Rajchenberg M, Redhead SA, Ryvarden L, Trappe JM, Watling R, Wu Q (2007) Global diversity and distribution of macrofungi. Biodivers Conserv 16:37–48

    Article  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  CAS  PubMed  Google Scholar 

  • Packham JM, May TM, Brown MJ, Wardlaw TJ, Mills KA (2002) Macrofungal diversity and community ecology in mature and regrowth wet eucalypt forest in Tasmania: A multivariate study. Austral Ecol 27:149–161

    Article  Google Scholar 

  • Popovic V, Zivkovic J, Davidovic S, Stevanovic M, Stojkovic D (2013) Mycotherapy of cancer: an update on cytotoxic and antitumor activities of mushrooms, bioactive principles and molecular mechanisms of their action. Curr Top Med Chem 13:279–2806

    Article  Google Scholar 

  • Rafique AN (1996) Studies on the cultivation of mushroom Pleurotus species in Gujarat. Ph. D. Thesis, Department of Microbiology, M.G. Science Institute, Navrangpura, Ahmedabad

    Google Scholar 

  • Sánchez-Ballesteros J, González V, Salazar O, Acero J, Portal MA, Julián M, Rubio V, Bill GF, Platas G, Mochales S, Peláez F (2000) Phylogenetic study of Hypoxylon and related genera based on ribosomal ITS sequences. Mycologia 92:964–977

    Article  Google Scholar 

  • Shah ZA, Ashraf M, Ishtiq C (2004) Comparative study on cultivation and yield performance of oyster mushroom (Pleurotus ostreatus) on different substrates (Wheat straw, leaves, sawdust). Pak J Nutri 3:158–160

    Article  Google Scholar 

  • Shakeel M, Ilyas M, Kazim M (2013) Evaluation of synthetic hexaploid wheats (derivative of durum wheats and Aegilops tauschii accessions) for studying genetic diversity using randomly amplified polymorphic DNA (RAPD) markers. Mol Biol Rep 40:21–26

    Article  CAS  PubMed  Google Scholar 

  • Sibounnavong P, Cynthia CD, Kalaw SP, Reye RG, Soytong K (2008) Some species of macrofungi at Puncan, Carranglan, Nueva Ecija in the Philippines. J Agri Technol 4(2):105–115

    Google Scholar 

  • Tang LH, Xiao Y, Li L, Guo Q, Bian YB (2010) Analysis of genetic diversity among Chinese Auricularia auricular cultivars using combined ISSR and SRAP markers. Curr Microbiol 61:132–140

    Article  CAS  PubMed  Google Scholar 

  • Trappe JM, Castellano MA (1991) Keys to genera of truffles (Ascomycetes). McIlvainea 10:47–65

    Google Scholar 

  • Tuckwell DS, Nicholson MJ, McSweeney CS, Theodorou MK, Brookman JL (2005) The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiology 151:1557–1567

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Liu Y, Li H, Zhao S, Wang S, Liu Y, Wu D, Xu F (2014) Genetic diversity of Pleurotus pulmonarius revealed by RAPD, ISSR, and SRAP fingerprinting. Curr Microbiol 68:397–403

    Article  CAS  PubMed  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR) – anchored polymerase chain reaction amplification. Genomics 20(2):176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology, Government of India for DBT sponsored NER-Twinning project (No. BT/320/NE/TBP/2012). We gratefully acknowledge Chief Wildlife Warden, Environment and Forest Department, Government of Mizoram, India. We are grateful for Department of Biotechnology, Government of India for establishing DBT-BIF centre and DBT-State Biotech Hub in the Department of Biotechnology, Mizoram University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhim Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lallawmsanga, Passari, A.K., Singh, B.P. (2018). Exploration of Macrofungi in Sub-Tropical Semi-Evergreen Indian Forest Ecosystems. In: Singh, B., Lallawmsanga, Passari, A. (eds) Biology of Macrofungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-02622-6_1

Download citation

Publish with us

Policies and ethics