Skip to main content

The Traditional Risk Measures

  • Chapter
  • First Online:
Risk Measurement

Abstract

Traditional literature enumerates risk measures without any attempt to classify them. Nevertheless several taxonomies can be used to distinguish between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall:

    • The median is the value separating the upper and lower halves of a data set or of a probability distribution.

    • The mode represents the most frequent value in a data set. The notion is transferable to a probability distribution.

  2. 2.

    http://www.ruf.rice.edu/%7Elane/.

  3. 3.

    The proposition in probability theory known as the law of total expectation or the tower rule states that if X is a random variable whose expected value E(X) is defined, and Y  is any random variable on the same probability space, then

    $$\displaystyle \begin{aligned} E(X) = E(E(X\mid Y)). \end{aligned} $$
    (3.1.33)
  4. 4.

    The term portfolio is here used stricto sensus and not necessarily as a combination of assets.

  5. 5.

    All these distributions will be used in different ways in our application.

  6. 6.

    Ξ represents the set of all probability measures on ( Ω, P) which are absolutely continuous with respect to P.

References

  • Abdel-Aty, S.H. 1954. “Ordered variables in discontinuous distributions”. Statistica Neerlandica 8, no. 2: 61–82.

    Article  Google Scholar 

  • Adrian, Tobias, and Markus K. Brunnermeier. 2016. “CoVaR”. American Economic Review 106, no. 7: 1705–1741.

    Article  Google Scholar 

  • Ahmadi-Javid, Amir. 2011. “An information-theoretic approach to constructing coherent risk measures”. In 2011 IEEE international symposium on information theory proceedings (ISIT), 2125–2127. Piscataway: IEEE.

    Chapter  Google Scholar 

  • –. 2012a. “Addendum to: Entropic value-at-risk: A new coherent risk measure”. Journal of Optimization Theory and Applications 155, no. 3: 1124–1128.

    Google Scholar 

  • –. 2012b. “Entropic value-at-risk: A new coherent risk measure”. Journal of Optimization Theory and Applications 155, no. 3: 1105–1123.

    Google Scholar 

  • Artzner, P. et al. 1999. “Coherent measures of risk”. Mathematical Finance 9, no. 3: 203–228.

    Article  Google Scholar 

  • Balbás, Alejandro, José Garrido, and Silvia Mayoral. 2009. “Properties of distortion risk measures”. Methodology and Computing in Applied Probability 11, no. 3: 385.

    Article  Google Scholar 

  • Bargès, Mathieu, Hélène Cossette, and Etienne Marceau. 2009. “TVaR-based capital allocation with copulas”. Insurance: Mathematics and Economics 45, no. 3: 348–361.

    Google Scholar 

  • Baumol, William J. 1963. “An expected gain-confidence limit criterion for portfolio selection”. Management Science 10, no. 1: 174–182.

    Article  Google Scholar 

  • Bawa, Vijay S. 1975. “Optimal rules for ordering uncertain prospects”. Journal of Financial Economics 2, no. 1: 95–121.

    Article  Google Scholar 

  • Bickel, Peter J., and Erich L. Lehmann. 2012. “Descriptive statistics for nonparametric models. III. Dispersion”. In Selected works of EL Lehmann, 499–518. Berlin: Springer.

    Chapter  Google Scholar 

  • Burr, Irving W. 1955. “Calculation of exact sampling distribution of ranges from a discrete population”. The Annals of Mathematical Statistics 26, no. 3: 530–532.

    Article  Google Scholar 

  • Chen, Nai-Fu, Richard Roll, and Stephen A. Ross. 1986. “Economic forces and the stock market”. Journal of Business 59: 383–403.

    Article  Google Scholar 

  • Chorro, Christophe and Guégan, Dominique and Ielpo, Florian. 2015. “A time series approach to option pricing”. Springer, Berlin.

    Book  Google Scholar 

  • Degen, Matthias, and Paul Embrechts. 2008. “EVT-based estimation of risk capital and convergence of high quantiles”. Advances in Applied Probability 40, no. 3: 696–715.

    Article  Google Scholar 

  • Evans, D.L., L.M. Leemis, and J.H. Drew. 2006. “The distribution of order statistics for discrete random variables with applications to bootstrapping”. INFORMS Journal on Computing 18: 19.

    Article  Google Scholar 

  • Fabrizi, Enrico, and Carlo Trivisano. 2016. “Small area estimation of the Gini concentration coefficient”. Computational Statistics & Data Analysis 99: 223–234.

    Article  Google Scholar 

  • Fama, Eugene F. 1965. “The behavior of stock-market prices”. The Journal of Business 38, no. 1: 34–105.

    Article  Google Scholar 

  • Fishburn, Peter C. 1977. “Mean-risk analysis with risk associated with below-target returns”. The American Economic Review 67, no. 2: 116–126.

    Google Scholar 

  • Föllmer, Hans, and Alexander Schied. 2008. “Convex and coherent risk measures”. preprint, Humboldt University.

    Google Scholar 

  • –. 2011. Stochastic finance: An introduction in discrete time. Berlin: Walter de Gruyter.

    Google Scholar 

  • Gaivoronski, Alexei, and Georg Pflug. 2000. “Properties and computation of value at risk efficient portfolios based on historical data”, WP, Norvegian University of Sciences and Technology, Trondheim, Norway.

    Google Scholar 

  • Giacometti, R., and S. Ortobelli. 2004. Risk measures for asset allocation models, Chapter in: Risk measures for the 21st century, 69-87, eds John Wiley, UK.

    Google Scholar 

  • Godin, Frédéric, Silvia Mayoral, and Manuel Morales. (2012). “Properties of Distortion Risk Measures”. Journal of Risk & Insurance 79, no. 3: 841–866.

    Article  Google Scholar 

  • Guégan, D., and B. Hassani. 2013. “Multivariate VaRs for operational risk capital computation: A vine structure approach.” International Journal of Risk Assessment and Management (IJRAM) 17, no. 2: 148–170.

    Article  Google Scholar 

  • Guégan, Dominique and Bertrand K. Hassani. 2018. More accurate measurement for enhanced controls: VaR vs ES? Journal of International Financial Markets, Institutions and Money, 54: 152–165.

    Article  Google Scholar 

  • Guégan, D., and P.-A. Maugis. 2010. “An econometric study of vine copulas.” International Journal of Economics and Finance 2: 2–14.

    Google Scholar 

  • Gumbel, E.J. 1947. “The distribution of the range”. The Annals of Mathematical Statistics 18, no. 3: 384–412.

    Article  Google Scholar 

  • Hartley, H.O., and H.A. David. 1954. “Universal bounds for mean range and extreme observation”. The Annals of Mathematical Statistics 25, no. 1: 85–99.

    Article  Google Scholar 

  • Kullback, S., and R.A. Leibler. 1951. “On information and sufficiency”. Annals of Mathematical Statistics 22, no. 1: 79–86.

    Article  Google Scholar 

  • J.P. Morgan, 1996. “Riskmetrics Technical Document”, U.S.A.

    Google Scholar 

  • Markowitz, Harry. 1952. “Portfolio selection”. The Journal of Finance 7, no. 1: 77–91.

    Google Scholar 

  • –. 1959. Portfolio selection, efficient diversification of investments. New York: Wiley.

    Google Scholar 

  • Merton, Robert C. 1972. “An analytic derivation of the efficient portfolio frontier”. Journal of Financial and Quantitative Analysis 7, no. 4: 1851–1872.

    Article  Google Scholar 

  • Rockafellar, R. Tyrrell, and Stanislav Uryasev. 2002. “Conditional value-at-risk for general loss distributions”. Journal of Banking & Finance 26, no. 7: 1443–1471.

    Article  Google Scholar 

  • Ross, Stephen A. et al. 1976. “The arbitrage theory of capital asset pricing”. Journal of Economic Theory 13, no. 3: 341–360.

    Article  Google Scholar 

  • Rousseeuw, Peter J., and Christophe Croux. 1993. “Alternatives to the median absolute deviation”. Journal of the American Statistical Association 88, no. 424: 1273–1283.

    Article  Google Scholar 

  • Roy, Andrew Donald. 1952. “Safety first and the holding of assets”. Econometrica: Journal of the Econometric Society20: 431–449.

    Google Scholar 

  • Rudloff, Birgit, Jörn Sass, and Ralf Wunderlich. 2008. “Entropic risk constraints for utility maximization”. In Festschrift in celebration of Prof. Dr. Wilfried Grecksch’s 60th Birthday, 149–180.

    Google Scholar 

  • Sereda, Ekaterina N. et al. 2010. “Distortion risk measures in portfolio optimization”. In Handbook of portfolio construction, 649–673. Berlin: Springer.

    Chapter  Google Scholar 

  • Siotani, M. 1956. “Order statistics for discrete case with a numerical application to the binomial distribution”. Annals of the Institute of Statistical Mathematics 8: 95–96.

    Article  Google Scholar 

  • Stone, Bernell K. (1973). “A general class of three-parameter risk measures”. The Journal of Finance 28, no. 3: 675–685.

    Article  Google Scholar 

  • Sweeting, Paul. 2017. Financial enterprise risk management. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Tsimashenka, I., W. Knottenbelt, and P. Harrison. 2012. “Controlling variability in split-merge systems”. In Analytical and stochastic modeling techniques and applications. Lecture Notes in Computer Science, vol. 7314, 165. Berlin: Springer.

    Google Scholar 

  • Wirch, Julia L., and Mary R. Hardy. 2003. “Distortion risk measures: Coherence and stochastic dominance”. Insurance Mathematics and Economics 32, no. 1: 168–168.

    Google Scholar 

  • Yamai, Yasuhiro, Toshinao Yoshiba, et al. 2002. “Comparative analyses of expected shortfall and value-at-risk: Their estimation error, decomposition, and optimization”. Monetary and Economic Studies 20, no. 1: 87–121.

    Google Scholar 

  • Yamane, Taro. 1973. Statistics: An introductory analysis. New York: Harper & Row.

    Google Scholar 

  • Yitzhaki, Shlomo et al. 2003. “Gini? mean difference: A superior measure of variability for non-normal distributions”. Metron 61, no. 2: 285–316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guégan, D., Hassani, B.K. (2019). The Traditional Risk Measures. In: Risk Measurement. Springer, Cham. https://doi.org/10.1007/978-3-030-02680-6_3

Download citation

Publish with us

Policies and ethics